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Preface

Before the advent of high speed computers, it was advantageous to expend con-
siderable effort to manipulate solutions analytically into a form which mini-
mized the subsequent computational effort. It is now often more convenient to
use methods which are analytically simple, but require large amounts of com-
putation. Furthermore, many problems of practical interest can be solved only
by the use of such methods. Because of the fantastic speed and storage capabili-
ties of modern computers, almost any problem of linear analysis can be solved
to some degree of accuracy. In fact, computer programs can be written for
entire classes of problems, as, for example, wires of arbitrary shape with arbi-
trary excitation and loading (Chapter 4).

This monograph attempts to present a unified approach to the solution of
field problems using computers. The methods are general, applying to fields of
any type, but the examples are taken from electromagnetic theory, The material
is introduced primarily by application of the theory, and the reader should not
expect to find rigorous proofs and theorems. References to other literature are
provided for that purpose. It is hoped that this approach will enable the reader
to learn the various techniques in minimum time. Furthermore, since the details
of solution vary greatly from problem to problem, only by many examples can
one gain the insight needed to treat new problems. There is an art to choosing a
good solution, and this art is learned through experience.

The unifying concept for this text is the method of moments. This is a very
general concept, and almost any solution, analytical or numerical, can be inter-
preted by it. For example, the classical eigenfunction approach corresponds to the
particular choice of eigenfunctions for expansion and testing. The Rayleigh-
Ritz variational method and Galerkin’s method are closely related to it, and so
on. It is the author's conviction that the moment method, approached from the
standpoint of function spaces and linear operators, is the best way to present
the general theory. Particular cases are then interpreted within this general
framework.

The text is divided into two main parts, one on deterministic problems and
the other on eigenvalue problems. Chapter 1 gives a discussion of the method of
moments and of the various approximations that are applicable, Chapter 2 uses
some of these for electrostatic problems, Chapter 3 for some two-dimensional
field problems, and Chapter 4 for three-dimensional problems of wire antennas
and scatterers. Chapter 5 discusses the general formulation of electromagnetic

ix
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problems in terms of generalized network paramerers. This approach should
appeal to electrical engineers because of their familiarity with network theory.
Chapter 6 considers the multiport problem, that is, structures having several
ports for excitation, measurement, and loading. Chapter 7 discusses the eigen-
value problem according to the method of moments, using the nonuniform
transmission line as an example. Chapter 8 applies these techniques to wave-
guides of arbitrary cross section, and Chapter 9 to resonant cavities containing
arbitrary media. The final chapter considers the problem of optimization, and
shows that it reduces to an eigenvalue problem.

The theory is best expressed in the language of linear function spaces, but
an attempt has been made to minimize its use. The concepts that are needed are
defined and illustrated when they are introduced. A summary of the general
structure of linear spaces is given in Appendix A. A computational algorithm
for the inversion of matrices is given in Appendix B, and one for the evaluation
of matrix eigenvalues and eigenvectors is given in Appendix C. For a better
understanding of this appended material the reader is advised to consult addi-
tional references.

Much of the material of this monograph has resulted from work performed
at Syracuse University by the author and his students, The following were major
contributors: Joseph Mautz, Radha Gupta, Thomas Bristol, and Robert
Wallenberg. Discussions with various faculty colleagues were also most helpful.
The manuscript was typed by two very efficient secretaries, Mary Jo Fairbanks
and Louise Capra. Research support was provided by several contracts and
grants from the Rome Air Development Center and the National Science
Foundation. The author expresses his sincere thanks to everyone who has aided
in the development of this book.

Roger F. Harrington



CHAFTER

1

Deterministie Problems

1:1. Inireduciion

The use of high-speed digital computers not only allows more computations to
be made than ever before, it makes practicable methods of solution too repeti-
tious for hand calculation. In the past much effort was expended to analytically
manipulate solutions into forms which minimized the computational effort. It is
now often more convenient to use computer time to reduce the analytical effort.
Approximation techniques, once considered a last resort, can be carried to such
high orders on computers that they are for most purposes as good as exact
answers. They also permit treatment of problems not solvable by exact methods.

This text has been written to provide a unified treatment of matrix methods
for computing the solutions to field problems. The basic idea is to reduce a
functional equation to a matrix equation, and then solve the matrix equation by
known techniques. These concepts are best expressed in the language of linear
spaces and operators. However, it is not necessary that the reader have prior
knowledge of this theory, because we shall define and illustrate the concepts as
they are introduced. A brief summary of linear spaces and operators is given in
Appendix A. Detailed expositions may be found in many textbooks [1-3].}

In this chapter we consider equations of the inhomogeneous type

Lf)=g (1-1)

! Bracketed numbers refer to the References at the end of each chapter.
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where L is an operator, g is the source or excitation (known function), and [ is
the field or response (unknown function to be determined). By the term deter-
ministic we mean that the solution to (1-1) is unique; that is, only one fis asso-
ciated with a given g. A problem of analysis involves the determination of f when
L and g are given. A problem of synthesis involves a determination of L when f
and g are specified. In this text we consider only the analysis problem.

This chapter presents the basic mathematical techniques for reducing func-
tional equations to matrix equations. A unifying principle for such techniques is
found in the general method of moments, in terms of which most specific solutions
can be interpreted. We shall consider a deterministic problem solved once it is
reduced to a suitable matrix equation, since the solution is then given by matrix
inversion. Most computers have subroutines available for matrix inversion,
which is a relatively simple operation. For reference, the widely used Gauss-
Jordan method is given in Appendix B.

The examples of this chapter are simple, chosen to illustrate the theory with-
out clouding the picture with physical concepts or complicated mathematics,
However, when these methods are applied to problems of practical interest the
procedures are not so simple, The details vary according to the type of problem,
and can be illustrated only by treating a variety of problems. For this reason we
treat many specific problems in the subsequent chapters. It is hoped that these
examples will not only allow the reader to solve similar problems, but will
suggest extensions and modifications to treat other types. Although most of the
examples are taken from electromagnetic theory, the procedures are general and
apply to field problems of any kind.

1-2. Formulation of Problems

The general methods of solution will be discussed in the notation of linear spaces~
and operators, and hence specific problems should be put into this notation.
Given a deterministic problem of the form L(f) = g, we must identify the opera-
tor L, its domain (the functions f on which it operates), and its range (the func-
tions g resulting from the operation). Furthermore, we usually need an inner
product {f, g, which is a scalar defined to satisfy?

Lfg>=1<a.0> (1-2)

{af + Bg, h) = alf, h) + P<g, h) (1-3)
S5fr=>0  iff#£0

=0 iff=0

(1-4)

3 The usual definition of inner product in Hilbert space corresponds to <f*, g» in our notation.
For this text it is more convenient to show the conjugate operation explicity wherever it occurs,
and to define the adjoint operator without conjugation.
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where o and f are scalars and * denotes a complex conjugate. We sometimes
need the adjoint operator L* and its domain, defined by

(Lf,g> =<[. g’ (1-3)

for all fin the domain of L. An operator is self~adjoint if L* = L and the domain

of L* is that of L.
Properties of the solution depend upon properties of the operator. An opera-
tor is real if Lfis real whenever fis real. An operator is positive definite if

(fYLf>>0 (1-6)

for all £ # 0in its domain. It is positive semidefinite if > is replaced by = in (1-6),
negative definite if > is replaced by < in (1-6), etc. We shall identify other prop-
erties of operators as they are needed.

If the solution to L(f) = g exists and is unique for all g, then the inverse
operator L' exists such that

f=L"(g) (1-7)

If g is known, then (1-7) represents the solution to the original problem. How-
ever, (1-7) is itself an inhomogeneous equation for g if fis known, and its solution
is L{f) = g. Hence L and L™' form a pair of operators, each of which is the
inverse of the other. _

Facility in formulating problems using the concepts of linear spaces comes
only with practice, which will be provided by the many examples in the following
chapters. For the present, let us consider a simple abstract example so that
mathematical concepts may be illustrated without bringing physical concepts
into the picture.

Example. Given g(x), ﬁnd_ f(x) in the interval 0 < x < | satisfying

d F
~F =0 (1-8)
JO)=f(1)=0 (1-9)
This is a boundary-value problem for which
d!

The range of L is the space of all functions g in the interval 0 < x < 1 that we
wish to consider. The domain of L is the space of those functions fin the interval
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= L]

- 0 £ x < 1, satisfying the boundary conditions (1-9), and having second deriva-
tives in the range of L. The solution to (1-8) 15 not unique unless appropriate
boundary conditions are included. In other words, both the differential operator
and its domain are required to define the operator.

A suitable inner product for this problem is

o0 = [ Sae) dx (1-1)

It is easily shown that (1-11) satisfies the postulates (1-2) to (1-4), as required.
Note that the definition (1-11) is not unique. For example,

[ W () d (1-12)
[i]

where w(x) > 0 is an arbitrary weighting function, is also an acceptable inner
product. However, the adjoint operator depends on the inner product, which can
often be chosen to make the operator self-adjoint.

To find the adjoint of a differential operator, we form the left side of (1-3),
and integrate by parts to obtain the right side. For the present problem

oy = (- 55)s s

tdfdg , _[df 7'

:fxdx E;g]

L d’g dg df]
_juf(_EF)dH[ =g (1-13)

The last terms are boundary terms, and the domain of L® may be chosen sﬁ that
these vanish. The first boundary terms vanish by (1-9), and the second vanish if

g0)=g(1)=0 (1-14)
It is then evident that the adjoint operator to (1-10) for the inner product (1-11) is

d]
P=L=-— 1-15
73 (1-15)

Since L* = L and the domain of L® is the same as that of L, the operator is self-
adjoint,
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Sec. 1-3] Method of Moments 5

It is also evident that L is a real operator, since Lf is real when fis real. That
L is a positive definite operator is shown from (1-6) as follows:

L) = II‘( If)dx

(L [d

i S
=J'u I%I dx (1-16)

Note that L is a positive definite operator even if fis complex.
The inverse operator to L can be obtained by standard Green's functmn
techniques.® It is

1
L™ Y(g) = _L G(x, x")g(x") dx’ (1-17)

where G is the Green's function

x(1 - x") x<x'
G(x, x") = (1-18)
(1—x)x' x>x

We can verify that (1-17) is the inverse operator by forming ' = L™'(g), differ-
entiating twice, and obtaining (1-8). Note that no boundary conditions are
needed on the domain of L™', which is characteristic of most integral operators.
That L™! is self-adjoint follows from the proof that L is self-adjoint, since

{Lf1, f2) =<9, L 'g2) (1-19)

Of course, the self-adjointness of L™! can also be proved directly. It similarly
follows that L™ ! is positive definite whenever L is positive definite, and vice versa.

1-3. Method of Momenis

We now discuss a general procedure for solving linear equations, called the
method of moments [4,5]. Consider the inhomogeneous equation

Lf)=g (1-20)

3 See, for example, reference [2], Chapter 3.
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where L is a linear operator, g is known, and f is to be determined. Let f be
expanded in a series of functions f, /5, f3, - .. in the domain of L, as

S=3 . (1-21)

where the =z, are constants. We shall call the f, expansion functions or basis
Junctions. For exact solutions, (1-21) is usually an infinite summation and the -
f, form a complete set of basis functions. For approximate solutions, (1-21) is
usually a finite summation. Substituting (1-21) in (1-20), and using the linearity
of L, we have

T allf) =g (1-22)

It is assumed that a suitable inner product {f, g has been determined

for the problem. Now define a set of weighting functions, or testing functions,
Wy, W3, Wy, ... in the range of L, and take the inner product of (1-22) with
each w,. The result is

2, 0 Wy L) = (Wp, g (1-23)

m = 1,2,3,....This set of equations can be written in matrix form as

[laldl2t,] = [ga] (1-24)
where
{wy, Lfy>  {wy, Ly ...
[lead = | w2, Lf;> <wi, Lf;y ... (1-23)
.EI. {WI,H}
)= || o= [M® (1-26)

If the matrix [/] is nonsingular its inverse [/ ~ '] exists, The «, are then given by
(%] = [121]0g..] (1-27)
AR

and the solution for f is given by (1-21). For concise expression of this result,
define the matrix of functions

[fn]=[f1 f: f;'- ] “'ﬂ}
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and write

f=[fl=,] = [£[nd 1[g0] (1-29)

This solution may be exact or approximate, depending upon the choice of the
f, and w,. The particular choice w, = f, is known as Galerkin's method [6,7].

If the matrix [/] is of infinite order, it can be inverted only in special cases, for
example, if it is diagonal. The classical eigenfunction method leads to a diagonal
matrix, and can be thought of as a special case of the method of moments. If the
sets f, and w, are finite, the matrix is of finite order, and can be inverted by
known methods (Appendix B).

One of the main tasks in any particular problem is the choice of the f, and
w,. The f, should be linearly independent and chosen so that some superposition
(1-21) can approximate f reasonably well. The w, should also be linearly
independent and chosen so that the products {w,,g) depend on relatively
independent properties of g. Some additional factors which affect the choice of
f. and w, are (1) the accuracy of solution desired, (2) the ease of evaluation of
the matrix elements, (3) the size of the matrix that can be inverted, and (4) the
realization of a well-conditioned matrix [/].

Example. Consider the same equation as in the example of Section 1-2, but
with the specific source g = 1 + 4x*. Hence our problem is

'ng =1+ 4x? (1-30)
J0)=f(1)=0 (1-31)

This is, of course, a simple boundary-value problem with solution

x? x*

f(x)= %x ~3 =g (1-32)

To illustrate the procedure, the problem will be reconsidered by the method of

moments.
For a power-series solution, let us choose

fo=x— x"*! (1-33)

n=1223,..., N, so that the series (1-21) is

J"=. iﬂ.[x - x**") (1-34)

n=]
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Mote that the term x is needed in (1-33), else the f, will not be in the domain of
L; that is, the boundary conditions will not be satisfied. For testing functions,
choose

w,=f,=x—x"*1 (1-35)

in which case the method is that of Galerkin. In Section 1-8 it is shown that the
w, should be in the domain of the adjoint operator. Since L is self-adjoint for
this problem, the w, should be in the domain of L, as are those of (1-35).

Evaluation of the matrices (1-25) and (1-26) for the inner product (1-11) and
L = —d*/dx? is straightforward, and results in

mn

b = {Wp, Lfy> = m (1-36)
B _ m(3m + 8) i
g"_{w"g}_ﬁ[mﬂ}(mn} (1-37)

For any fixed N (number of expansion functions), the a, are given by (1-27) and
the approximation to f by (1-34),

To illustrate convergence, let us consider successive approximations as N is
increased. For N = 1, we have /,, = 1/3, g, = 11/30, and hence from (1-24)
2; = 11/10. For N = 2, the matrix equation (1-24) becomes

bl =)= a9

]
from which the «'s are found as

| _ |15 |
[“1] i £ ] o
For N = 3, the matrix equation (1-24) becomes
s A %y 1]
TER -
1 4] lw) Ui

~ from which the o’s are found as

HRH
i . (1-41)
oy ]

Note that this third-order solution is the exact solution, (1-32). For N = 4 we
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03

X

Figure 1-1. Solutions using f, = x — x**! and Galerkin's method.

again obtain the exact solution, and so on for higher N. Plots of the various
solutions are shown in Fig, 1-1.

The reason an exact solution is obtained for this problem is that some com-
bination of the f, can exactly represent the solution, and any N linearly in-
dependent tests must correctly determine the coefficients. If the solution cannot
be expressed as a finite series of the f,, then we continue to obtain approximate
solutions converging to the exact solution in the sense of projections, as dis-
cussed in Section 1-8.

More important than solving any particular equation, the inverse matrix
[/~!] gives a representation of the inverse operator L™ '. Hence we have a solution
(usually approximate) to Lf = g for any g. In physical problems, L represents
the system, g the excitation, and f the response. A determination of the [/™']
matrix therefore gives us a general solution for the system, that is, the response /
for arbitrary excitation g, assuming that g is reasonably well behaved.

The integration involved in evaluating the [, = {w,, Lf,> of (1-25)is often
difficult to perform in problems of practical interest. A simple way to obtain
approximate solutions is to require that equation (1-22) be satisfied at discrete
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points in the region of interest. This procedure is called a point-matching method.
In terms of the method of moments, it is equivalent to using Dirac delta functions
as testing functions. The following example illustrates this in the one-dimen-
sional case.

Example. Reconsider the problem of Section 1-3, stated by (1-30) and (1-31).
Again we choose expansion functions (1-33), so that (1-22) becomes

N d*
Ea:, —E(x—x'“}]=1+d-x1 (1-42)

=l
For a point-matching solution, let us take the points

m
I,.=N—H M=I,2,.‘..,N (143}

which are equispaced in the interval 0 < x < 1. Requiring (1-42) to be satisfied
at each x,, gives us the matrix equation (1-24), with elements

Lo = n(n + 1) (Ef'ﬁ)ﬂ (1-44)
du= s 4(*&'?-_’1')1 (1-45)

Note that this result is identical to choosing weighting functions

W = 0(x — x,) (1-46)
j'-’hl‘-rﬂ &(x) is the Dirac delta function, and applying the method of moments with
inner product (1-11).

To illustrate some numerical results, consider the solution as N is increased.
For N = 1, we have I, = 2, g, = 2, and from (1-27) &, = 1. For N = 2, the

matrix equation is
3 EI-[4] -

from which the «'s are found as

)= [7] 49
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For N = 3, the exact solution (1-41) must again be obtained, since the exact
solution is a linear combination of the f.'s and we are applying N independent
tests. Similarly, for N > 3 we continue to obtain the exact answer for the same
reason. Plots of these solutions differ to some extent from those of Fig. 1-1 but
are qualitatively similar. The point-matching solutions in this case are actually
less acEurate than the corresponding Galerkin approximations, but for low orders
of solution they are usually sensitive to the particular points of match. For high-
order solutions the use of equispaced points normally gives excellent results.

Note that even though the [/] matrices of (1-36) and (1-44) are quite different
in form, they give similar results. There are infinitely many possible sets of basis
functions and of testing functions. Some sets may give faster convergence than
others, or give matrices easier to evaluate, or give acceptable results with smaller
matrices, etc. For any particular problem one of our tasks is to choose sets well
suited to the problem.

1:5. Subsecilonal Bases

Another approximation useful for practical problems is the method of sub-
sections. This involves the use of basis functions f, each of which exists only over
subsections of the domain of f. Then each a, of the expansion (1-21) affects the
approximation of f only over a subsection of the region of interest. This proce-
dure often simplifies the evaluation and/or the form of the matrix [/]. Sometimes
it is convenient to use the point-matching method of Section 1-4 in conjunction
with the subsectional method.

Example. Again consider the problem of Section 1-3, stated by (1-30) and
(1-31). N equispaced points on the interval 0 < x < 1 are defined by the x_, of
(1-43). A subinterval is defined to be of width 1/(N + 1) centered on the x,,. This
is shown for case N = 5 in Fig. 1-2(a). A function which exists over only one
subinterval is the pulse function

Pix)={ . : (1-49)

For N = 35, the function P(x — x,) is shown in Fig. 1-2(b). A linear combination
of f, = P(x — x,) according to (1-21) gives a step approximation to f, as repre-
sented by Fig. 1-2(c). However, for I. = —d?/dx?, the operation LP does not
yield a function in the range of L. Hence the pulse functions cannot be used as
basis functions unless we extend the operator (Section 1-7) or use an approximate
operator (Section 1-6).
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o X, L Xy Xy Xy 1

{a} Points and subintervals

||— Pix - x4}
i i i i i |

0 I, Ty X3 Xy xs I

(b)) Pulse function

1
C I : | i i | |

0 =K i o | T4 *s i
(c]) Step approximation
1 - Tix = x5)
A ] | i
0 x Iy Xy Ty Iy 1

{d} Triongle function

L] IL X3 Iy Xy Ig I

(e} Piecewise linear approximation

Figure 1-2. Subsectional bases and functional approximations.

A better-behaved function is the triangle function, defined as

!
1
i N i—
L-lxl(N+1) ¥ <5
T(x) = | (1-50)
1
2 >S9

For the case N = 5 the function T(x — x;) is shown in Fig. 1-2(d). A linear
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combination of triangle functions of the form

N
f= _g',lm.T(x — Xx,) (1-51)

gives a plecewise linear approximation to f, as represented by Fig. 1-2(¢). For
L = —d?|dx*, the operation LT gives the symbolic function

LT(x — x,) = (N + D[ —d(x — x,_) + 26(x — x,) — 8(x — x,4,)] (1-32)

where (x) is the Dirac delta function. We can use this result in the method of
moments as long as the w, are not also symbolic functions. We cannot use a
point-matching procedure in this case.

To follow through the method of moments, let f, = T(x — x,), that is, use
the expansion (1-51). As testing functions, choose w, = P(x — x,,). For inner
product (1-11), the matrix elements of (1-25) and (1-26) are easily ﬂP]uEtﬂd as

(2(N + 1) m=n
la={—(N+1) |m—n|=1 (1-53)
0 Im —n| > 1

Figure 1-3. Moment solutions using triangles for expansion and pulses for testing. Numbers
adjacent lo points denote arder of solution.


Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle

Aaron
Rectangle


13 Lreterministic roblems [Lb. L

(1-54)

4m? + (1/3
gt [ B2 1)

“N+1 (N +1)°

Note the particularly simple form of [[]. We shall encounter this form again in
connection with difference equations (Section 1-6).

Figure 1-3 illustrates the convergence of the above solution as N (number of
subsections) is increased. Only the break points of the piecewise linear solution
are shown; the functional approximation is given by straight lines joining these
points. The break points are, of course, also the «,, since they are the peaks of
the triangle-function components.

1-8. Appreximaie Operators

In complex problems it is sometimes convenient to approximate the operator to
obtain approximate solutions. For differential operators, the finite-difference
approximation has been widely used [8]. For integral operators, an approximate
operator can be obtained by approximating the kernel of the integral operator [6].
Any method whereby a functional equation is reduced to a matrix equation can
be intérpreted in terms of the method of moments. Hence for any matrix solution
using approximation of the operator there will be a corresponding moment solu-
tion using approximation of the function.

Example. Let us consider the problem (1-30) and (1-31) by a finite-difference
approximation. This involves replacing all derivatives by finite differences; that

is, for a given Ax, R
2=l (=+3) 1 (=-F)]
Zoilred)re-9]
~ {Ti-}—z [f(x — Ax) = 20(3) + f(x + Ax)]

For our present problem, consider the interval 0 < x < 1 divided into N + 1
segments, with end points x,, as depicted in Fig. 1-2(a). For Ax equal to one
segment, Ax = 1/(N + 1), and a finite-difference approximationto L = —d?|dx?
is

)+ 20~ f(x+775)] @50

Ef:':NJ’l]:[_f(x_ N+1

N+1

Note that L? —+ L as N — co for all fin the domain of L.
We can now apply the method of moments to the approximate equation
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Lif =1 + 4x? (1-37)
subject to boundary conditions f{0) = f{1) = 0. Most commonly this is done by

a point-matching procedure at the x,. The result is a matrix equation of the
form (1-24), where the x«, correspond to f{(x,),

2(N + 1)* m=n

lna = { —(N + 1)* Im—n|=1 (1-58)
0 lm=—mn|>1
m 2
Om =1+ 4(m) (1-39)

Note that the [/] matrix of (1-58) is the same form as that of (1-53) obtained from
a subsectional basis. [The trivial difference in the position of N' 4+ | can be taken
care of by choosing w,, = (N + 1) P(x — x,,) in the solution of Section 1-5.] The
Jm 0f (1-59) and (1-54) are slightly different, and hence the two solutions will be
slightly different. However, as N becomes larger the two g, approach one another,
so the rates of convergence of the two solutions are about the same.

Numerical results for the above solution are similar to those of Fig. 1-3.
Iterative procedures are sometimes used to solve the matrix equations obtained
by difference approximations [9]. However, iterative procedures usually con-
verge slowly, and with high-speed large-memory computers it is often simpler
to invert the matrix. Because of the tridiagonal form of [[], special techniques can
be used to invert it [10].

1-7. Extended Operaiors

Asnoted earlier, an operator isdefined by an operation (forexample, L = —d?/dx?)
plus a domain (space of functions to which the operation may be applied). We
can extend the domain of an operator by redefining the operation to apply to new
functions (not in the original domain) as long as this extended operation does not
change the original operation in its domain. If the original operator is self-
adjoint, it is desirable to make the extended operator self-adjoint also. By this
procedure we can use a wider class of functions for solution by the method of
moments. This becomes particularly important in multivariable problems (fields
in multidimensional space), where it is not always easy to find simple functions
in the domain of the original operator.

Example A. Suppose we wish to use pulse functions for an expansion of fin a
moment solution for the operator L = —d?/dx®. As noted in Section 1-5, these
are not in the original domain of L. However, for any functions w and [ in the
original domain,
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L dw df
{w,Lf> = .,:Txﬁd" (1-60)

obtained from (1-11) by integration by parts. If Lf does not exist, but df/dx does
exist, (1-60) can be used to define an extended operator. This extends the
domain of L to include functions f whose second derivatives do not exist, but
whose first derivatives do exist. It is still assumed that f{0) = f{1) = 0. Actually,
the type of extension represented here is precisely that which gives rise to the
theory of symbolic functions. By using Dirac delta functions in earlier sections
we anticipated this concept of extending the domain of a differential operator.
To apply the method of moments using pulse functions and the extended

operator, let
N
f= Ztnc.ﬁ‘;x —x.) (1-61)
where P are the pulse functions defined by (1-49). For testing functions, let

W = T(x — x,), where T are the triangle functions defined by (1-50). The
elements of the [/] matrix are found using (1-60) as

(2(N + 1) ms=n
-il"= <wn!Lfn}='| _[N+ 1} |M— HI = ] {1"51]
L0 Im—n|=>1

Note that these are identical to the elements (1-53), which were for f, and w,,
reversed from those of the present solution. We could have anticipated this
result because L is self-adjoint. The elements of the [g] matrix are now given by

G = j; T(x — x, )1 + 4x?) dx (1-63)

which yields a result slightly different from (1-54). However, the two g,, approach
each other as N becomes large, and the convergence of the two solutions is about

the same.
Numerical results for the above example are similar to those of Fig. 1-3 for

various N. However, the functional approximation in this case is a step approxi-
mation; that is, the points are midpoints of steps, instead of break points of a
piecewise linear approximation as in Fig. 1-3.

Example B. As a second example, let us extend the original domain of
L = —d?*/dx* to apply to functions not satisfying the boundary conditions
0) = f(1) = 0. Referring to (1-13), we note that boundary terms appear if the
functions do not obey the given boundary conditions. However, if an extended
operator L* is defined by



Sec. 1-7] Extended Operators 1y
1 d’w 1
s Ef == dx — | f— -

o, 7> = [ wifax - [ 15 (1-64)

we have {w, L) = {f, L*w even if the original boundary conditions are not

met. Hence the extended operator is self-adjoint regardless of boundary condi-

tions. A method-of-moments solution therefore proceeds in this extended domain

in the same manner as for the original domain, except that the expansion and
testing functions need not satisfy boundary conditions.

To illustrate the procedure, consider the choice

fa=w,=x" n=1L12....N (1-65)

For N = 4 these functions form a basis for the exact solution (1-32), and hence
the exact solution should be obtained. Evaluating the matrices in the usual way,

using the extended operator for [, = {Wa, L., for N = 4 we obtain the
matrix equation
=1 sy =Y =T TET T
2 -5 -3 -2 |s]_[#
-3 -3 -3 -5 | |e|T|H )
-4 -3 -5 -] |a] L&

0ar

exact and N = 4

0.2

0.1

x

Figure 1-4. Extended operator moment solutions using powers of x for expansion and testing,
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This may be solved for the a's to obtain

oy 3
o= ao
-%

which 1s indeed the exact solution. Note that if (1-65) are used with the original
operator L = —d?/dx* a singular [/] matrix results, and hence no solution is
obtained. To illustrate convergence using the extended operator, Fig. 1-4 shows
plots of the cases N = 2 and N = 3, plus the exact solution (N = 4).

1-8. Variational Interpretation

It is well known that Galerkin's method (w, = f,) is equivalent to the Rayleigh-
Ritz variational method [6,7]. That the general method of moments is also a
variational method is usually not noted, but the proof is essentially the same as
for Galerkin's method [7].

Let us first interpret the method of moments according to the concepts of
linear spaces. Let S°(Lf) denote the range of L, 5°(Lf,) denote the space spanned
by the Lf,, and $(w,) denote the space.spanned by the w,. The method of
moments (1-23) then equates the prujoﬂ?ﬂn of Lf onto 5 (w,) to the projection
of the approximate Lf onto %(w,). Figure 1-5 represents this pictorially. In the

(L)

— S{Lf,)

H(w,)

Figure 1-5. Pictorial representation of the method of moments in function space.

special case of Galerkin's method, $(w,) = &(f.). Recause the process of obtain-
ing projections minimizes an error, the method of moments is an error-
minimizing procedure. Because the error is orthogonal to the projections, it is
of second order. This same conclusion is obtained from the calculus of variations
[7]. The derivation of the variational results will not be given here, but we shall
summarize the conclusions.

‘Given an operator equation Lf = g, it is desired to determine a functional of
J (number depending on f)



Sec. 1-9] Perturbation Solutions 19

p(f) =S k> (1-68)

where h is a given function. If k is a continuous function, then p(f)is a continuous
linear functional. The functional p may be fitself if & is an impulse function, but
then p is no longer a continuous functional. Now let L* be the adjoint operator
to L, and define an adjoint function f* (adjoint field) by

Lf*=nh (1-69)
By the calculus of variations, it can then be shown that [7]

_SLh S
LLSD

is a variational formula for p with stationary point (1-68) when fis the solution
to Lf = g and f* the solution to (1-69). For an approximate evaluation of p, let

f=g ofu f° =€ [ (1-71)

(1-70)

Substitute these in (1-70), and apply the Rayleigh-Ritz conditions
dp/da; = dp/8B; = 0 for all i. The result is that the necessary and sufficient
conditions for p to be a stationary point are equations (1-23). Hence the method
of moments is equivalent to the Rayleigh-Ritz variational method [7]. The
method of moments is closely related to the direct methods of the calculus of
variations, so called because they yield a solution to the variational problem
without recourse to the associated differential equation.

The above variational interpretation can be used to give additional insight
into how to choose the testing functions. It is evident from (1-69) and (1-71) that
the w, should be chosen so that some linear combination of them can closely
represent the adjoint field /. When we calculate fitself by the method of moments,
h of (1-68) is a Dirac delta function and f* of (1-69) is a Green's function. This
implies that some combination of the w, should be able to approximate the
Green’s function. Since a Green's function is usually poorly behaved, we should
expect computation of a field by the method of moments to converge less slowly
than computation of a continuous linear functional. This is found actually to be
the case.

1-89. Perturbailion Soluiions

Sometimes the problem under consideration is only slightly different (perturbed)
from a problem which can be solved exactly (the unperturbed problem). A first-
order solution to the perturbed problem can then be obtained by using the solu-
tion to the unperturbed problem as a basis for the method of moments. This
procedure is called a perturbation method. Higher-order perturbation solutions
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can be obtained by using the unperturbed solution plus correction terms in the
method of moments. Sometimes this is done as successive approximations by
including one correction term at a time, but for machine computations it is

usually easier to include all correction terms at once.
To express these concepts in equation form, let

Lo(fo) =g (1-72)

represent the unperturbed problem for which the solution f; is known. Let
M = L — L, be the difierence operator, and hence

L(f)=(Lo + M)f) =g (1-73)

represents the perturbed problem for which the solution f is desired. For a
first-order perturbation solution, let

f=afy (1-74)
and apply the method of moments. If L is self-adjoint, the testing function
w = f, may be chosen; otherwise we should choose w = fj, the solution to the

unperturbed adjoint problem. An application of the method of moments to this
one-term expansion yields

({fo,r Lofo» + {fo, MfoD)x = {fo, 8> (1-75)
Now, by (1-72), {fo, Lofo> = <fy, g, and the above equation can be written

1 _ {fl}t Mfﬂ}
Jos @0 + {Jo: Mfy)

(1-76)

If the perturbation is truly small, the second term in the denominator of (1-76)
will be small compared to the first term, and from (1-74) and (1-76)

(1-77)

o1 - Lo M),

{fur ﬂ}

This is the first-order perturbation solution.

For higher-order solutions, we merely choose f;, = f, in the general method
of moments (Section 1-3) and f;, f5,... serve as correction terms. For self-
adjoint operators, choose w; = f,: otherwise choose w, = fj. The advantage of
a perturbation approach over other moment solutions rests primarily in the
faster convergence of the perturbation solution.
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2

Electrostatie Fields

2-1. Operaior Formulaiion

The static electric intensity E is conveniently found from an electrostatic poten-
tial ¢ according to

=-V¢ (2-1)

where V is the gradient operator. In a region of constant permittivity ¢ and
volume charge density p, the electrostatic potential satisfies the Poisson equation

-V =p (2-2)

where V? is the Laplacian operator. For unique solutions, boundary conditions
on ¢ are needed. In other words, the domain of the operator must be specified.
For now, consider fields from charges in unbounded space, in which case

r¢p — constant as r — o (2-3)

where r is the distance from the coordinate origin, for every p of finite extent.
Now the differential operator formulation is

L =p (2-4)
where
L= —gV? (2-5)
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and the domain of L is those functions ¢ whose Laplacian exists and have r¢
bounded at infinity according to (2-3). The well-known solution to this problem is

P(x, y, 2) = J-J- p{x,}r z]dx’ dy' dz' (2-6)

where R = /(x — x) + (y — ¥)* + (z — z')? is the distance from a source
point (x', ', 2') to a field point (x, y, z). Hence the inverse operator to L is

L =J]' _|' dx' dy' dz’' 4:51-: (2-7)

It is important to keep in mind that (2-7) is inverse to (2-5) only for the boundary
conditions (2-3). If the boundary conditions are changed, L™ changes. Also, the
designation of (2-5) as L and (2-7) as L™" is arbitrary, and we could reverse the
notation if desired.

A suitable inner product for electrostatic problems (e constant) js*

(¥ = [[[ #Cx, v, 2W(x, y, 2) dx dy dz (2-8)

where the integration is over all space. That (2-8) satisfies the required postulates
(1-2), (1-3), and (1-4) is easily verified. We now wish to show that L is self-
adjoint for this inner product. For this, form the left side of (1-5),

(L, ¥ = [[[ (~eV?¢) dr (2-9)

where dt = dx dy dz. Green's identity is

[[Twvs ~ v de = (Iﬁ' i‘ﬂ) ds (2-10)

where § is the surface bounding the volume ¥ and n is the outward direction
normal to S. Let-S be a sphére of radius r, so that in the limit r - oo the volume
¥ includes all space. For ¢ and y satisfying boundary conditions (2-3),§ = C,/r
and d¢/on — C,/r* as r =+ co. Hence § d¢/dn — C/r® as r -+ o, and similarly
for ¢ dy/dn. Since ds = r® sin 8 df d¢ increases only as r?, the right side of
(2-10) vanishes as r —+ co. Equation (2-10) then reduces to

[[[wv26 dx = [[[$¥2y dr @-11)

! For £ a function of position, the differential operator (2-5) is changed to —V - (£V), and
g should be included in (2-8) as a weight function to make this new operator self-adjoint.
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from which it is evident that the adjoint operator L® is
I* =L = —gV? (2-12)

Since the domain of L® is that of L, the operator L is self-adjoint. The mathe-
matical concept of self-adjointness in this case is related to the physical concept
of reciprocity [1].

It is evident from (2-5) and (2-7) that L and L™ " are real operators. It will now
be shown that they are also positive definite; that is, they satisfy (1-6). As dis-
cussed in Section 1-2, we need only show it for either L or L™, For L, form

% L) = [[[ $*(—2v?9) dr (2-13)

and use the vector identity ¢V3¢ = V- (¢V¢) ‘F¢ V¢ plus the divergence
theorem. The result is

(4%, Lg> = [[[e9g* - V¢ dr - ﬁ £d*V¢) - ds (2-14)
¥

where § bounds V. Again take S a 's;phere of radius r. For ¢ satisfying (2-3), the
last term of (2-14) vanishes as r —+ oo for the same reasons as in (2-10). Then

*, L§> = [[[e1VgI? dx (2-15)

and, for & real and & > 0, L is positive definite. In this case positive definiteness
of L is related to the concept of electrostatic energy.

2-2. Charged Conducting Plaie

Consider a square conducting plate 2a meters on a side and lying on the z = 0
plane with center at the origin, as shown in Fig. 2-1. Let a(x, ») represent the
surface charge density on the plate, assumed to have zero thickness. The electro-
static potential at any point in space is

a(x’, ')
4neR

d(x, y,z) = J' :.dx‘ [ ;dy’ (2-16)

where R = /(x — x')* + (¥ — »")* + z%. The boundary condition is ¢ = V
(constant) on the plate. The integral equation for the problem is therefore

a(x’, y')
dne f(x — X' + (y — y')?

v mJ’_ dx’ J’_ dy’ 2-17)
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where |x| < a, |¥| <= a. The unknown to be determined is the charge density
o(x, ¥). A parameter of interest is the capacitance of the plate

C E i jj-dx [ dy o(x, ) (2-18)

which is a continuous linear functional of o.

Let us first go through a simple subsection and point-matching solution [2],
and later interpret it in terms of more general concepts. Consider the plate
divided into N square subsections, as shown in Fig. 2-1. Define functions

v |1 on As,
Jo= tﬂ on all other As,, (2-19)
and let the charge density be represented by
N
E[I, .-"'r} = E]'xn .Frl‘- {2'2[}]

Substituting (2-20) in (2-17), and satisfying the resultant equation at the mid-
point (x,, v.) of each As,, we obtain the set of equations

N ™
V=Ylua m=12..,N (2-21)
n=1
where
l i 1
L. = dx*j dy' (2-22)

Axn arn  Aney/ (X — X)* + (yu— V)

Figure 2-1. Square conducting plate and subsections.
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Note that [, is the potential at the center of As,, due to a uniform charge density
of unit ampiitude over As,. A solution to the set (2-21) gives the o, in terms of
which the charge density is approximated by (2-20). The corresponding capaci-
tance of the plate, approximating (2-18), is

N
= = Zln, As, =Y I7] As, (2-23)

This result can be interpreted as stating that the capacitance of an object is the
sum of the capacitances of all its subsections plus the mutua] capacitances
between every pair of subsections.

To translate the above results into the language of linear spaces and the
method of moments, let

f(x, y) =a(x, y) (2-24)
glx, )=V x| <a,lyl<a (2-25)
L(f) = _f dx' _f dr Ld2d (2-26)

dne./(x — x'V +(y — y')?

Then L(f) = g is equivalent to (2-17). A suitable inner product, satisfying (1-2)
to (1-4), for which L is self-adjoint, is

fray = dx [ dyfx o) @-21)

To apply the method of moments, we use the functions (2-19) as a subsectional
basis, and define testing functions

W = 0(x — x)0(y — yu) (2-28)

which is the two-dimensional Dirac delta function. Now the elements of the [/]
matrix (1-25) are those of (2-22), and the [g] matrix of (1-26) is

[9a] =] : (2-29)
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The matrix equation (1-24) is, of course, identical to the set of equations (2-21).
In terms of the inner product (2-27), the capacitance (2-18) can be written

1

con®

(2-30)

since ¢ = V on the plate. Equation (2-30) is the conventional stationary for-
mula for the capacitance of a conducting body [3].

For numerical results, the /.., of (2-22) must be evaluated. Let 2b = 2a/\/N
denote the side length of each As,. The potential at the center of As, due to unit
charge density over its own surface is

I IIud..'n: d 1
"=J'- -» y4u.fx=+y1

2b 2b
=—In(1 +,/2) =—(0.8814) (2-31)

This derivation uses Dwight [4], 200.01 and 731.2. The potential at the center of
As,, due to unit charge over As, can be similarly evaluated, but the formula is
complicated. For most purposes it is sufficiently accurate to treat the charge on
As, as if it were a point charge, and use '

As, " b?
R g [(xp = X + (U — )

- m#n

(2-32)

This approximation is 3.8 per cent in error for adjacent subsections, and has less.
error for nonadjacent ones. Table 2-1 shows capacitance, calculated by {E-g
using the a's obtained from the solution of (2-21), for various numbers of sib-
areas. The second column of Table 2-1 uses the approximation (2-32), the third

TABLE 1-1. Capacitance of a Unit Bquare Plate

(picofarads fmeter)

No. of Cl2a Cl2a
subareas | approx. [.. | exact /..

1 1.5 315

9 37.3 36.8

16 38.2 .7

36 39.2 38.7

100 $9.97 39.5
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charge density ‘potential

1 1 1 1 | 1 1 1 L

0 o1 0.2 0.3 0.4 0.5 6 0.7 0.8 0.g 1.0

distance along plate

Figure 2.2. Approximate charge density on subsections adjacent to the centerline of a square
conducting plate.

column uses an exact evaluation of the /_,. A good estimate of the true capaci-
tance is 40 picofarads. Figure 2-2 shows a plot of the approximate charge density
along the subareas nearest the center line of the plate, for the case N = 100
subareas. Note that ¢ exhibits the well-known square root singularity at the
edges of the plate.

Other geometries for which square subareas have been used to obtain
numerical solutions are rectangular plates [2] and solid conducting cubes [5].
The related problem of a parallel-plate capacitor is treated in Section 2-4.

2.3. Conduciers of Complex Shape

Often it is not possible to use square subareas for electrostatic problems. In this
section we consider some simple approximations which enable almost any con-
ducting body to be treated by subarea approximations.

First, consider the plane disk of radius r, with uniform charge density of unit
amplitude. The electrostatic potential ¢ at its center is given by the simple
integral

1 r

i r
é = J‘D do Lp b =3 (2-33)
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Let us compare this potential for a disk to that at the center of a square area with
unit charge density and the same area A4, given by (2-31). The result is

Pais = g (0.2821)
(2-34)
Puquare = “{E (0.2806)

There is less than 0.54 per cent difference between the two. This is because the
major contribution to ¢ is due to the charge in the immediate vicinity of the
field point, and this is the same in each case. Hence if a subarea is not too narrow
(has a reasonably large area/perimeter ratio), a good approximation to the diag-
onal elements of the [/] matrix is

ha % —— /4, (2-35)

where A, is the area of the nth subarea. A useful approximation for the off-
diagonal elements is the point-charge approximation of (2-32), which can be
written in general as

A,

l
kil dneR,,

ms#n (2-36)

where R, = J(x, — x. + (¥, — ¥.)* + (2, — z,)? is the distance between
the centers of the mth and nth subareas. Approximation (2-36) cannot be used if
the body has different areas very close together, as, for example, in the parallel-
plate capacitor (see Section 2-4).

When the above approximations are not sufficiently accurate, the following
procedure is convenient for calculating the /., Figure 2-3 shows an elongated

Figure 2-3. Numerical evaluation of [,


Aaron
Rectangle


30 Electrostatic Fields |un. 2

triangular subarea. To evaluate [, divide the area into a disk plus segments of
circular annuli, as shown. Label these subsubareas 0, 1, 2,.... Then

1 - 1 A;
= Fali Ll =37
Lo £ (ﬂjﬂz\/ﬁdﬂ > Zr Rm) (237)

where A, is the area of the disk, the 4, (i = 1, 2,...), are the areas of the
annular segments, and R, is the distance from the center of the ith annulus to
the center of the disk. Equation (2-37) is basically a numerical evaluation of the
integral for [,,. If the subarea is not planar, the subsubareas can be taken as
those lying betmcn,cnnc:ntnn spheres. Eval Evaluation of l..» elements for very close
subareas can be a&‘ﬂﬁlphshtﬂ in a similar manner. For problems having ro-
tational symmetry, it is sometimes convenient to take complete annular sub-
areas, as demonstrated by the following example.

Example., Consider a hollow conducting tube of circular cross section and
length L, as shown in Fig. 2-4. We wish to determine the electrostatic capacitance.

almest - square cylindrical

subsechinn subsections
- i’ -
-\" —-\.\ -h.h 1'1 N oy
\ \ 1.\1 \ \ \
L i it | i [
: I | | | | .
‘ RN - ok
I /
/ ] | 1’ | /
! ! i/ £ g /
.-I'l‘r _.-"' # " o L
| l
= L )

Figure 2-4. Hollow conducting circular cylinder,

The tube has rotational symmetry about its axis, and hence cylindrical sub-
sections are convenient, as indicated on the figure. To evaluate the /,,, each
subcylinder can be further divided into smaller, almost square, subsections, as
shown in Fig. 2-4. The [, for a point-matching solution are then evaluated by
formulas similar to (2-37) as applied to the almost-square subsubsections. Note
that for this problem all the /., are equal, and the [, depend only on |m — n|.
Hence [[] is a Toeplitz matrix [6).

Some numerical results are given in Table 2-2, calculated using 10 cylindrical
subsections. The corresponding charge density was as expected, being almost
uniform in the central region of a thin tube and singular at the ends. A similar
problem, that of the capacitance of washer-type conducting plate, has been
treated in the literature [7]. This latter problem was done using an analytical
evaluation of the [, rather than a numerical one.
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Table 2-2. Capacitance C(picofarads) for a
Hollow Tube of Length 1 Meter, for Various

Length [Diameter (L/d) Ratios
Lid 1 2 6 20 60

C 63 42 23 17 12

2-4. Arbilitrary Excliailon of Conduciors

So far we have been considering only the specific problem of a charged conduct-
ing body. We now wish to take the more general viewpoint that the [/] matrix
characterizes the conducting body (or bodies) for any excitation. The excitation
may be due to charge on the conductors or to external charges which produce an
“impressed " field. The particular excitation enters only into the [g] matrix of
the method of moments, and hence [/] depends only on the geometry of the con-
ductors. Once the inverse matrix [/~ '] is obtained, a specific solution is obtained
by matrix multiplication according to (1-27).

To express these ideas in equation form, consider the general problem repre-
sented by Fig. 2-5. There are N conducting bodies, having net charges ¢;, §3,...
gy, and potentials ¥,, V,, ..., Vy. External to the conductors there may be
additional sources which, in the absence of conductors, produce a potential ¢'
(impressed field). The boundary condition is that ¢' plus the potential due to
charges on the conductors must bc constant on each mnductur In equation
form, this is :

fp:i on §,

; p. l"r: on S,
é + 9 amer ds = (2-38)

. ,‘VHUHSH

®  external
X SOUrCes
5

Figure 3-5. N charged conductors in the field of external sources.


Aaron
Rectangle


where ¢ is the surface charge density on the conductors. The ¢' and ¥, are
assumed known, and (2-38) is an integral equation for o. Equation (2-17) is the
specialization of (2-38) to a charged conducting plate with no external sources.
The total charge y, instead of ¥, may be specified on each conductor, in which
case the W, are treated as unknown constants in (2-38) to be obtained after o is

found.

Example. To illustrate these concepts, consider the two-body problem of paral-
lel square conducting plates, as shown in Fig. 2-6. We here treat the case ¥,
specified on the plates but with no external sources (¢' = 0). The same plates in
an impressed field are considered in Section 2-35.

Let both the top and bottom plates be divided into N square subsections, so
that the total number of subsections is 2N. The charge density is assumed con-
stant on each subsection, and the total field is matched at the center of each
subsection. The evaluation of the [/] matrix follows the procedure of Section 2-2,

and results in the following 2N by 2N matrix

_[tm o
"1 0™

where ¢ denotes “top plate™ and b denotes * bottom plate.” The N by N sub-
matrices on the diagonal are single-plate matrices; hence

/] (2-39)

[] =[I*] =[] of Section 2-2 (2-40)

The off-diagonal submatrices are the plate-to-plate matrices, which must be
equal:

[*] =["] (2-41)

Figure 2-6. Paralle]l square conducting plates.
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Let the elements [, be ordered so that when m = n the subareas are one on top
of the other; that is, they coincide as d — 0. Now if m # n, the point-charge
approximation of (2-32) gives good results; that is,

bl
R/ (X — Xp)* + (Y — ¥a)* + o

When m = n, the square subsection can be approximated by a circular one of
the same area, and the potential evaluated a distance 4 above it. The integration
gives (2-33) with r replaced by /r¥ + d* — d; hence the desired [ is (2-35)
modified by the ratio of these factors, or

= G‘T%Ez {lbl[\/ E@i = "ﬁd] (-43)

fan (2-42)

This completes the evaluation of [/].
Suppose we wish to evaluate the usual capacitance between the two plates.

This corresponds to voltage + ¥ on the top plate and — ¥ on the bottom one.
Hence the excitation matrix is

[9m] = [[H: i] (2-44)
where
%
[9n] = —[gn] = F (2-45)

The «, correspond to the charge densities on each subarea and are given by
(1-27). However, for this problem, it is evident from symmetry that the charge
density on the top plate is minus that on the bottom plate. Hence

_[ta] [ =
o2 '[[uf] } —[u:.]‘ 246

and we can use this to reduce [/][z] = [g] to
[imn = Tnd[22] = [g%] (2-47)

which is only an N by N matrix equation. The charge densities on the top plate
are now found by inversion as

(o] = [ = ") 1[gs] (2-48)
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where [g'] is given by (2-45). The capacitance of the parallel-plate capacitor is

_ charge on top plate

< Z

1 £
y s, (2-49)

Since all the As = 4b* and all elements of [¢"] = V¥, this can be written

C=4b2Y ("=} (2-50)
which is simply 4b* times the sum of all elements of [(I" — I')"!].

Computations for this case have been made and compared with other
approximate solutions [8]. When fringing is neglected, the capacity is C ~ eA/d.
Figure 2-7 shows the results obtained from (2-50) for the case N = 36, normal-
ized to ed/d. It is interesting to note that, when d is as little as 0.05a, neglecting
fringing results in 6 per cent error. The error rapidly increases as d becomes
larger, becoming 100 per cent as d — o0.

Now suppose we want the capacitance of the two plates when connected
together. This is obtained by keeping both plates at the same potential V. Then,
instead of (2-45), we have

r]

) =a1=|" (2-51)

dila

Figure 1-7, Capacitance of a square parallel-piate capacitor, normalised te £.4)d,
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and, from symmetry, instead of (2-46),

L]
= 2-52
[=.] [[ 1:.]] (2-52)
Analogous to (2-47), the N by N matrix equation for the present excitation is
[lme + D[] = [g2] (2-33)
and, analogous to (2-48), the solution is
(o] = [(F* + I")a 10g2] (2-54)
The capacitance of the two fllatm connected together is then
C = total charge
V
2
==Y a As, (2-55)
V iep

which can also be written in the form of (2-50) as

C =8b* Y (M + M)z} (2-56)

Note that as d — 0, [["] = [I"*] and C becomes the capacitance of a single plate
(Section 2-2). As d = o, [I™] = 0, and C becomes twice the capacitance of a

single plate.

2-5. Eleciric Polarizabllity

If a conducting body with no net charge is placed in a uniform electrostatic
field, a net dipole moment p usually results. In general,

p= g ro ds (2-5T)

where r = u.x + u,y + u,z is the radius vector from the origin to a point on
the surface S of the conductor, and o(x, y, z) is the surface charge density on S.
The dipole moment is proportional to the impressed field E' which produces o;
hence - '

p=[x]"E (2-58)

where [y] is the polarizability tensor. Elements of [x] may be found by applying
a unit field E and evaluating components of p. For example, x,, = p, for
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E = u,, and so on. The polarizability tensor is a useful quantity for the analysis
of artificial dielectrics [9] and for scattering by small objects.

The appropriate integral equation is (2-38) specialized to a single conducting
body S, which is

o ]
ﬁ Rds=V-¢ (2-59)

where ¢' is a potential from which the electrostatic field is determined by
E' = —Vg'. The constant potential ¥ must be obtained from the condition

ﬁn’ds=[l (2-60)
5

That is, the net charge on § is zero. Whenever E' is perpendicular to a plane of
reflection symmetry for the conductor, we can choose ¢' = 0 on that plane and
¥ = 0 in (2-59), which is equivalent to satisfying condition (2-60).

Example. Consider the parallel conducting plates of Fig. 2-6. We wish to
determine the polarizability tensor when they are connected together, that is,
maintained at the same potential. From symmetry considerations, it is apparent
that an E, will produce only a p,, an E, only a p,, and an E, only a p,. Hence the
polarizability tensor is diagonal:

Y 0 0
[x]= [D L © ] (2-61)
0 0 .

and the x, y, and z axes are principal axes of [x]. Also, from symmetry, 1,, = ¥,y
for square plates.

To evaluate y,,, take E' = w, and ¢* = —z. Note that ¢' = Oon z = 0, the
plane of symmetry, and hence (2-60) will be satisfied. Now the integral equation
(2-59) becomes

o . _| d/2 ontop plate
ﬁ 4neR 4 —~df2  on bottom plate (2-62)

This is the same integral equation as for the parallel-plate capacitor, except that
V is replaced by d/2. Hence the charge distribution is given by (2-48), where

(S J I~ % I~

(2-63)
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The polarizability is then found by approximating (2-57) by the summation

N [d d
Xez =P = E(Eﬁnﬁsn'l'iunmt)

A= |

_d*As

DI (AR b (2-64)

where As = 4b%, In terms of the capacitance between the parallel plates, (2-50),
Xz =3d?C (2-65)

This relationship between polarizability and capacitance results because of the
parallel-plate nature of the problem, and does not result in general. As a check
on (2-65), note that ¢ = CV = Cd|2, and p, = gd = d*C/2. Note that when
fringing can be neglected, (2-65) becomes

foe ™ e dA =§ (volume) (2-66)

where A is the area of one plate and the volume is that between the plates.

For the other two elements x,. = x,, of (2-61), let E'=u, and ¢' = —x.
Again ¢' = 0 on a plane of symmetry, whence (2-60) is satisfied. Now, instead
of (2-62), the integral equation is

o
ﬁ IR ds = —x on the plates (2-67)

It is evident that the charge distribution is the same on both plates, and hence is
given by (2-54) with

Xy

g1 =|*2 (2-68)

where x, is the x coordinate of the As, subarea. The approximate evaluation of
(2-57) then gives

N
I.‘I:.I . F.'E - Z. xn 2'Iill ﬂsﬂ

=862 ¥ x (I + ")z} x, (2-69)


Aaron
Rectangle


35 EJSCITOSIANC CIEMS  |Luik &
Another way of writing this result is

= 2b*[Fn1[(I" + I")nn 10ga] (2-70)

where ~ denotes transpose. This is a form that we shall encounter again in
subsequent chapters.

2-8. Dielectric Bodies

The electrical state of a dielectric body in an electrostatic field is characterized
by its polarization,

P=D—-¢gE=(zg—¢g)E (2-71)

where ¢ is the capacitivity (permittivity) of the dielectric and &, that of vacuum.
The electric field due to the polarization is given by [10]

B = 8(P) = —v(jj [ : Ux d‘t) (2-72)

where uy is the unit vector pointing from the source point to the field point.
Basically (2-72) is a superposition of the fields from all dipole elements Pdr of
source. The total field E' + E® must satisfy (2-71) in the dielectric; hence an

integral equation for P is
1
i ]
E+&P)=—P (2-73)

where & is defined by (2-72) and Ae = & — &.
A solution may be obtained by subsection and point-matching techniques.
In canonical form (2-73) is

L(P) = &(P) — i P=-F (2-74)

The functions in (2-74) are vectors, and require three numbers to represent them
at a point. Following the method of moments, we use the following subsectional

basis functions:

(u,m,w,) in At,
f2=1(0,0,0) elsewhere @5
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where the u's are coordinate unit vectors and Ar, is a representative volume
element. The elements of the «, coefficients of (1-21) can then be interpreted as
the amplitude of the x, y, and z components of P in Ar,; that is

Oy = (s Cys )
= P(Xps ¥nr Za) =P, (2-76)
where (x,, ¥,. z,) are the coordinates of the center of Ar,. Using the expansion

(1-21) in (2-74), and matching the resultant equation at the centers of all Ar,,
we obtain the matrix equation

[l(P,] = —[E.] (2-77)
where E!, = EY(x,., ¥... z.). Fach element of [/] is a dyadic, of the form

— 1 -
XK __ O ¥
T
| & - - (2-78)
1
x y .
L z‘_ [ L] Al ﬂz_

where the e, are derived from & in the same manner as the /,,, are derived from
L. For a physical interpretation of the elements of (2-78), we note that &5 is the
x component of E at (x,, V. Z,,) due to P = u_ at (x,, ,, z,), €& is the y com-
ponent of E due to the same P, etc. The solution to (2-77) is, of course, given by

[P.] = — [ 1[E,] (2-19)

If m and n range from 1 to N, this is a 3N by 3N matrix equation due to the
vector nature of P and E. Note that the e terms of (2-78) are independent of &,
which enters only into the As terms.

For crude solutions, the following approximations are often adequate. When
m # n each P, At, can be viewed as a point dipole, and E evaluated at At,,. The
result is

E Ut ey, (2-80)
where i, j denote x, y, or z, and e, is the dyad

At v RIRY) (2-81)

Comn
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where R = u(x, — x,) + 0,(yn — »») + 0z, — 2z,). When m = n the field
can be approximated by that at the center of a sphere having the same P.
This results in

Cpy = — — (2-82)

and e = 0, i # j. For better results, the approximation (2-82) may be replaced
by the field at the center of a spheroid or cylinder which approximates Ar. Still
better results can be obtained by numerical integrations similar to those of
Section 2-3.

The above solution remains valid for inhomogeneous dielectrics (& a function
of position), in which case the & of each At is taken to be that at its center. For
homogeneous dielectrics, the problem can be formulated in terms of a surface
distribution of bound charge [11], instead of a volume distribution of P. Since
charge is a scalar quantity, this procedure materially reduces the number of un-
knowns in the matrix solution.
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Two-dimensional
Electromagnetie Fields

3-:1. Transverse Magnetic Fields

To avoid unnecessary details, we start our consideration of electromagnetic
fields with two-dimensional problems. These can be thought of as three-dimen-
sional problems for which there is no variation of field quantities with respect to
one cartesian coordinate, taken to be the z coordinate. We postpone a general
discussion of three-dimensional fields until Chapter 5, after we have treated a
number of special cases.

An arbitrary electromagnetic field can be expressed as the sum of a transverse
magnetic (TM) part and a transverse electric (TE) part. The TM part has only
components of magnetic field H transverse to z, and the TE part has only com-
ponents of E transverse to z. For two-dimensional fields in isotropic media, the
TM part has only a z component of E and the TE part only a z component of H.
In many cases the TM and TE parts can be treated separately, reducing the
problem to a scalar problem. In this section we consider only TM fields, the TE
case being considered in Section 3-4.

In general a time-harmonic electromagnetic field (e/® time variation) satisfies
the Maxwell equations

VxE=—jouH (3-1)
V x H = jweE + J (3-2)

where J is the volume distribution of electric currents. For TM fields, assume

AW
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that E = u, E,(x, y), and similarly for J. The Maxwell equations then lead to
V2E, + k*E, = joulJ, (3-3)

where k = @+/eu = 2x/A is the wavenumber (A = wavelength). Equation (3-3)
is the two-dimensional Helmholtz equation. Solutions may be obtained by first
finding the field from a two-dimensional point source, that is, a three-dimen-
sional line source. The field at p = u,x + u, y due to a filament of current [ at

where n = /ufe = 120x is the intrinsic impedance of free space and H® is
the Hankel function of the second kind, zero order. The E, of (3-4) is the Green's
function for the operator of (3-3). A general solution is then the superposition of
E, due to all elements of source J, ds, or

E®) = =2 [[ 1) klp — ) ds (39)

where the integration is over the cross section of the cylinder of currents J,.

3-2. Conducting Cylinders, THM Case

Consider a perfectly conducting cylinder excited by an impressed electric field
E;, as represented by Fig. 3-1. The impressed field induces surface currents J, on
the conducting cylinder, which produce a scattered field E;. The field due to J,
is given by (3-5) specialized to the cylinder surface C. The boundary condition is

E,=E!+E!=0 onC (3-6)

that is, the tangential electric field vanishes on C. Hence, combining (3-5) and
(3-6), we have the integral equation

Ep) =" [ JOOHSKIp—pDdl ponc ()

where El(p) is known and J, is the unknown to be determined.

The simplest numerical solution of (3-7) consists of using pulse functions for
a basis and point matching for testing. To accomplish this, the scatterer contour
C is divided into N segments AC, and pulse functions defined as

1 on AC,
Jile) = ‘ 0  onall other AC,, ()
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Letting J, = }_ «, f,, substituting in (3-7), and satisfying the resultant equation
at the midpoint (x,,, »,.) of each AC,,, we obtain the matrix equation

[lal(2] = [g.] (3-9)
where the elements of [«,] are the a, coefficients, the elements of [g,] are
m= E:.(I_. .F-} {3—1“]
and the elements of [[,,] are
b= [ HP = + O =y dl (@-11)

A solution for the current is then given by J, = [/l )lg,) as discussed in
Section 1-3.

There is no simple analytic expression for the integral (3-11), but we can
evaluate it by various approximations. The crudest approximation is to treat an
element J, AC, as a filament of current when the field point is not on AC,; that is,

lua % 3 k AC, H[ky/Gry — %" + (0 — 1) (3-12)

¥

Figure 3.1, Cross section of a cylinder and cosrdinate systam.
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when m # n. For the diagonal elements /,, the Hankel function has an integrable

singularity, and the integral must be evaluated analytically. For this, we approxi-
mate AC, by a straight line and use the small argument formula

HP(z) =1 —j i log (""2—:) (3-13)

where y = 1.781 ... is Euler’s constant. An evaluation of (3-11) then gives

" 2. vk AC,
ek d.ﬂ'_[l ~j~log ( = )] (3-14)

where e = 2.718 ... The approximations (3-12) and (3-14) are analogous to
those used in Section 2-2 for electrostatic problems. Better approximations for
the present problem will be discussed in Section 3-3.

Example. Consider TM plane-wave scattering by conducting cylinders '[2,3].
In this case the impressed field is a uniform plane wave, which, if incident from
the direction ¢,, is given by

EL = plh(x oo dityaindi) (3-15)

This determines the excitation [g,] according to (3-10). An approximate evalua-
tion of [I,,] is given by (3-12) and (3-14). The solution for J, is then found by
matrix inversion in the usual manner.

A parameter of interest is the scatrering cross section o, defined as the width
(area in three-dimensional problems) for which the incident wave carries suffi-
cient power to produce, by omnidirectional radiation, the same scattered power
density in a given direction. In equation form, this is

2

E'(¢)

——

7 (3-16)

ol(¢) = 2np

where E*(¢) is the distant field from J,. It can be found by using the asymptotic
expression for H5? in (3-5). The result is [1]

E(¢) = nkK _L-h{-f’ i el (3-17)

where

1
K{p} e !—Itt.p+h.f4] (3_13}

,j 8nkp
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Substituting (3-15) and (3-17) in (3-16), we obtain
o(9) =5H [ 2., yyetes smeeyaine gy (3-19)
c

This can be evaluated numerically once J, is found.

A particularly descriptive form for the evaluation of (3-19) is obtained as fol-
lows. Let the integral be approximated by a sum over all AC,, with J, = a,,
X = X,, ¥ = ¥, in the integrand for each AC,. The result is

2
ol¢n ¢0) = —-1[PIZ5 I0Va D1 (3-20)

where [F.] is an “ excitation™ voltage matrix
[V4] = [AC, e/mses rtamsin du)] (3-21)
[Z..] is & scatterer **impedance ' matrix
[Zs] = [ACy ] (3-22)
and [V7] is a *“ measurement ™’ voltage matrix.
L el (3-23)

where ¢ = ¢, is the angle at which & is evaluated. We shall encounter this form
again in Section 3-6 and subsequent chapters, it being a special case of the
generalized network parameters discussed in Chapter 5. Note that (3-20) obeys
the reciprocity relationship o(¢;, ¢,) = o(¢,, ¢;); that is, the scattering cross
section is unchanged if the transmitter and receiver are interchanged.

A number of computations have been made for rectangular conducting
cylinders using approximations similar to those above [2]. A more accurate
numerical evaluation of the integral equation was used by Andreasen to com-
pute solutions for cylinders of other shapes [3]. It should be pointed out that the
approximations made above will not converge to the exact solution as N is in-
creased, because the I, m # n, are not exact in the limit. The solution will con-
verge to the exact solution if (3-12) is replaced by a more accurate approximation.
To illustrate the accuracy that can be obtained using the simple approximations
of this section, Fig. 3-2 shows the magnitude of the current on an ellipse as com-
puted by Andreasen and by the formulas of this section. It is interesting to note
that if the current is calculated by m x H on C instead of using the a«,, a better
solution is obtained, as indicated in Fig. 3-2. The scattering cross section, as
computed by Andreasen and by the above formulas, is illustrated by Fig. 3-3.
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Sec. 3-3] Various Approximations 4%

Note that the two results are almost identical, even though the currents (Fig. 3-2),

differ appreciably. This is because /o is a continuous linear functional of J, and
hence is insensitive to small variations in J about its true value (Section 1-8).

3-3. Various Approximations

The accuracy of a solution and the rate of convergence depend upon the ap-
proximations made. The solution of Section 3-2 can be improved by more
accurate evaluation of the [_,, as follows. For the [, additional terms can be
included in (3-13), but this will not appreciably affect convergence, since (3-14)
is exact in the limit AC, — 0. For the [, terms, m # n, we can expand the
integrand of (3-11) in a Taylor series about (x,, ».), and integrate the dominant
terms analytically. This will give both improved accuracy and convergence to the
exact solution as N —+ oo.

It has been found that the rate of convergence is almost twice as fast nt' a
piecewise linear approximation to J, is used instead of the step approximation.
In other words, the Nth-order linear solution gives about the same accuracy as
the 2Nth-order step solution. For a piecewise linear solution, instead of the steps
of (3-8) we use the triangles of (1-50), as discussed in Section 1-5. The evaluation
of the [, proceeds similarly to that for the pulse functions [4].

Solutions have also been obtained by Galerkin's method, using pulses for
both expansion and testing functions. It was found that, for solutions of the sub-
sectional-basis type, the accuracy and convergence of the Galerkin solution
were about the same as for the point-matching solution. The Galerkin method
apparently has its grmté%f”fﬁlity in pi?ﬁ_’urbatiunal solutions, that is, when the
solution is represented by only one expansion function, or by a few functions.

Perhaps the most convenient way of obtaining better approximations when
using computers is to numerically evaluate the [,,,. For this, we divide each AC,
into smaller subintervals, and approximate the integral over each subinterval by
(3-12) if nonsingular and by (3-14) if singular. To be explicit, let Fig. 3-4(a)
represent a small section of the contour of a cylindrical conductor. Let the sub-,
intervals AC,_,, AC,, and AC,,, be further subdivided as indicated by points
a, b, ¢, and d. Figure 3-4(b) shows the same contour straightened out, and an
expansion function constructed of three pulses. This three-stepped function
approximates a triangle function, shown dashed. Now, remembering that each
[, represents the field — E, at (x,, v,) due to expansion function f, at (x,, ¥,),
we can easily justify that, for m = n,

L = (333 + 122 + H33)mn (3-24)

where [, and I,, are given by (3-12) with AC, replaced by C,, and C,,, and /,,
is given by (3-14) with AC, replaced by C,, (see Fig. 3-4). The factors 1/2 in the
first and third terms of (3-24) arise from the fact.that the pulses over C,, and C
are one half the amplitude of the pulse over C,.. For the [, elements, m # n, the
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Figure 3-4. (a) Section of the contour. (b) Expansion function consisting of three con-
strained pulses.

procedure is the same, except that (3-12) is used for all J;; since the field point
never coincides with the source point.

To illustrate the accuracy obtainable with the above procedure, Fig. 3-5
shows the resultant current compared with Andreasen’s results [3]. Note that we
have taken smaller AC's in the region of rapid curvature on the ellipse for
better accuracy. It was found that when point m was distant from point n, say

10~

§ —

Figure 3-5. Current density on a conducting elliptic cylinder excited by a plane wave,
using constrained pulscs, TM case.
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P — Pa] = A/4, we can use (3-12) instead of (3-24) with no appreciable loss in
accuracy. In other words, it is more important to evaluate [, carefully for AC’s
close together than for distant ones. The use of expansion functions of the type
shown in Fig. 3-4 is equivalent to dividing the conductor into 2N segments, and
constraining every other «, to be the average of its adjacent «,'s before inverting
the [/..] matrix. We can, of course, use more pulses to approximate a triangle
function, but, judging from the accuracy of Fig. 3-5, this probably is unnecessary
for most purposes.

If we wish an approximation to the Galerkin solution, instead of the point-
matching solution, the functions of Fig. 3-4 can be used for both expansion and
testing. However, instead of analytically evaluating the second integration, we
can numerically evaluate it using approximations (3-12) and (3-14). The result is

Do = (3122 + (12 + lay + laa + 132) + {0y, + Lz + Iy + 133))0e  (3-25)

where the /; are the same /;; that appear in (3-24). One factor of 1/2 comes from
the fact that AC for each component pulse is 1/2 of AC,, other factors of 1/2
come from the fact that the two end pulses are 1/2 the amplitude of the central
pulse (Fig. 3-4). It is apparent from the forms of (3-24) and (3-25) that there will
be little difference between the two /,, and hence between the two solutions. Of
course, in the Galerkin solution the g, of (3-10) should also be modified to
represent a numerical integration of E! with the testing function of Fig. 3-4.

If the conductor is symmetrical about some axis, as is the ellipse, the problem
can be reduced to two matrices of order N/2, instead of a single matrix of order
N. Since the time required to invert a matrix is proportional to N2, this reduces
the matrix inversion time to one fourth the original time. The procedure is dis-
cussed in the literature [3,4). Finally, if the incident field E! is also symmetrical
about the same axis as is the conductor, only a single matrix of the order N/2
need be inverted.

3-4. Transverse Eleciric Fields

A two-dimensional TE field in isotropic media has no z component of E and only
a z com t of H. The most convenient general expression for the field is in
terms of potentials'

1
H=;?x.|l (3-26).

E=—joA — VO (3-27)

! In reference [1] the vector potential is defined so that uA replaces A in (3-26) to (3-28). We
denote the scalar potential by © and the charge density by g to avoid confusion with the
polar coordinates p and ¢.
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where the magnetic vector potential A and the electric scalar potential © satisfy

VA + k*A = —pJ (3-28)

Vi + k0 = —E \ (3-29)

The electric charge density q is related to J by the equarion of continuity
V:J=—jog (3-30)

Both (3-28) and (3-29) are Helmholtz equations, the same as (3-3), and hence
solutions are of the form (3-5). Defining the two-dimensional Green's function

Glp,p') = 411 H§klp - p'l) (3-31)

we can express solutions to (3-28) and (3-29) in unbounded two-dimensional
space as [1]

Ap) = i [[36G(p, p') ds’ (3-32)

o) = - [[ 46)G(o, ) (339

where the integration is over a z = constant cross section of the cylinder. In
evaluating the formulas of this section it should be remembered that all quanti-
ties are independent of z; hence all z derivatives are zero.

'8-5. Conducting Cylinders, TE Case

Let the conducting cylinder of Fig. 3-1 be excited by an impressed TE field. We
wish to determine the current on the cylinder and the field produced by this cur-
rent. This problem can be solved by enforcing the condition tangential E = 0
on C, as shown in Section 3-6, but first we consider the H-field formulation used
in the literature [2,3].

As discussed in Section 34, the TE field has only a z component of H, and a
transverse component of J. The total magnetic field /, at any point is the sum
of the impressed field H: plus the scattered field H? due to J on C; that is,

H,=H' + H* (3-34)
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The scattered field is related to its source J by (3-26) and (3-32), or

Hi=u-Vx [JGdI (3-35)
C

where the vector dl’ designates the reference direction of J. The field H, is finite
external to C, zero internal to C, and the discontinuity of H, on C equals the
current density. If the interior of C lies on the left side of 4l (right-hand rule),
then

J=—[H,c, (3-36)

where the C, denotes that H, is evaluated just external to C. Specializing (3-34)
to C,, we have

J-_[H;+u,-vuj'.mdr] (3-37)
C

Cs

which is an equation for the unknown current J. Equation (3-37) differs from the
classical integral equation in that a derivative operator as well as an integral
operator is present.

Because of the discontinuity in H, at C we have to be particularly careful in
evaluating (3-37). The Green’s function G is singular, and a simple interchange
of differentiation and integration is not always possible [5]. Figure 3-6 shows an
expanded view of the conductor boundary to help clarify these concepts. The
contour C lies on the current sheet, C, lies just outside, and C_ just inside. At
pointaon C,, H, = —J, and at point b on C_, H, = 0. If the scatterer is a con-
ducting sheet of infinitesimal thickness, it should be treated as the limit of one
of finite thickness.

We can write (3-37) in general operator notation as

L(J) = —H! (3-38)
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where "
I

L) =J+ [n, -V x _[c.ra rﬂ’] (3-39)

Cw

and proceed according to the method of moments. Again the simplest approxi-
mation is to use the pulses (3-8) as basis functions, and point matching for
testing. The current is then given by J = }_ a, f,, and the resulting matrix equation

is (3-9) with
Gm = —Hy(Xm, ¥m) (3-40)
an = Oy + H(m, n) (3-41)
where 4, is the Kronecker delta and H,(m, n) denotes H, at (x,, ¥.) on C, due
to unit current density on AC, at (x,, y,). Figure 3-7 represents a typical

current element J1 = AC, and local coordinates (x, y). From symmetry, and
the fact that the discontinuity in H, is J, we have

Hlicosr = —H,|zup- = —1/2 (3-42)
=0 r=0
and hence, by (3-41),
la=1/2 (3-43)

If AC, <€ A and the field point (x, y) is distant from J1 = AC,, then the source

¥

(=¥}

J1= AC, "

Figure 3-7. Element of current J1 and local coordinates.
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behaves as a point source. From (3-32)

pu AC

=" rril) ¥
Ay === HPkp) (3-44)
and from (3-26)
AC, @
He = 4j ox
ik AC, cos ¢ H(kp) (3-45)

where H{*! is the Hankel function of order 1. We can translate this to an arbi-
trary origin by replacing p by |p, — p.| and cos ¢ by n - R, where

Pm = Pa
B = 3-46
lpm - pnl [ }

is a unit vector from the source point (x,, y,) to the field point (x_, y.). This
result can be used as an approximation for all m # n. Hence (3-41) becomes,
form # n,

lue % 5 k AC,(+ RHP(KIpa ~ ) (3-47)

The solution is then given by J = [, ]/-'][g.], as discussed in Section 1-3.

For better approximations we can use the methods of Section 3-3 to obtain
more accurate /,,. For example, the pulse approximation to a triangle function,
Fig. 3-4, can be used, with the new [, given by (3-24), Alternatively, the approxi-
mate triangle function can be used for both expansion and testing, giving the
Galerkin result (3-25). Still more accurate evaluation of the /,, may be required
to treat thin conducting sheets when points m and » are close together.

Example. Consider TE plane-wave scattering by conducting cylinders. An im-
pressed uniform plane wave incident from the direction ¢; is given by

H = Ejt:n:.ndﬁ_nindﬂ {3,43}

The g,, are determined from this by (3-40), and the /,, are given by (3-43) and
' (3-47) for a first-order solution. The current is then found by matrix inversion
and multiplication in the usual manner.

e

[/
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Again the scattering cross section ¢ is of interest, given by

F

H(¢)
Hi

o(¢) = 2mp (3-49)

analogous to (3-16). Here H*(¢) is the distant field from J, obtainable by using
the asymptotic formula for H!?! in (3-45), and summing over all elements of
source. This gives [3]

H($) = Kk _|' J(x', y)m « RefHx cosdtysing) g (3-50)
c
where X is given by (3-18). Substituting (3-48) and (3-50) in (3-49), we obtain
k \ \ 1
a(¢) = ry M J(x', y')m « Reft= co2#¥xsind) gy (3-51)
c

which can be evaluated once J is found. The numerical evaluation of (3-51) can
be put in a form similar to (3-20) for computational convenience.

To illustrate a typical result, Fig. 3-8 shows the TE solution for the current
induced on the same elliptic cylinder as in Fig. 3-2 for the TM case. The com-
putations are those of Andreasen [3], and correspond in accuracy to using

1
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Figure 3-8. Carrent density on a conducting elliptic cylinder excited by a plane wave, TE case
{(after Andreasen [3]).
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Figure 3-9. Scattered field pattern for a conducting elliptic cylinder excited by a plane
wave, TE case (after Andreasen [3]).

approximations of the type illustrated by Fig. 3-4. Figure 3-9 shows the TE
scattering pattern of the elliptic cylinder, which may be compared to the corre-
sponding TM case of Fig. 3-3. Many other computations are available in the
literature [2,3].

3-8. Alternative Formulation

The TM problem was treated by an E-field formulation in Section 3-2, and the
TE problem was treated by an H-field formulation in Section 3-5. Actually, both
cases can be treated either by an E-field method or an H-field method. To illus-
trate this, we reconsider the TE case by an E-field formulation.

Let Fig. 3-1 represent a conducting cylinder excited by an impressed TE field
E' transverse to z. The scattered field E® is produced by transverse currents J on
C according to the formulas of Section 3-4, For the present problem, these
become

Ef= —jwA — VO (3-52)

A(p) = u {;J(p’}ﬁ(p: p) dl (3-53)
1 —-1dJ i

o0 = §.( 57) o 00 (3-54
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where G is given by (3-31). The boundary condition is the tangential component
of total E vanishes on the conductor; that is,

[Ei + Elonc =0 (3-55)

Defining the operator

o
L) = ~Eflc = [jod + 57 | (3-56)
on C

we can write (3-55) in operational notation as

L{‘” - E:[nﬂ{.‘ (3-57)

Note that the L of (3-56) contains derivatives, which require caveful treatment.

If J is continuous and has a continuous derivative on C, we can solve (3-57)
by the method of moments in a straightforward manner. However, this restric-
tion on J is not convenient for cylinders of arbitrary shape. If J is expanded in
terms of triangle functions, a point-matching solution works reasonably well
unless the field is matched at the breakpoint of the triangles. It J is expanded in
terms of pulse functions, dJ//dl gives impulse functions, and the point-matching
solution becomes questionable. At any rate, it does not converge in the limit as
the number of subsections become infinite. Perhaps the best procedure when
using pulses is either to approximate the operator (Section 1-6), or to extend the
operator (Section 1-7).

An approximate operator is obtained from (3-56) by replacing all derivatives
by difference approximations. The procedure is identical to that given in Chapter
4 for three-dimensional wires, except that the Green's function is different. For
a solution the approximate operator is used with pulse functions for expansion
and point matching for testing. This procedure is presented in detail in Section
4-2, and we summarize only the results here. The transverse current J on C is
represented as

J=Y I.P(l-1) (3-58)

where P(x) are the pulse functions of (1-49). The coefficients I, are given by the
matrix solution (4-21). The [Z] matrix corresponds to the [{] matrix in the
general notation of Section 1-3. The elements Z,, are given by (4-20) with Al,
replaced by AC,, and the y of (4-16) replaced by

W(n, m) = IET::" [, Hkoa) dp (3-59)
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where p,, = +/(x — x,)* + (¥ — ¥.)*. The excitation matrix is given by (4-14),
with Al, replaced by AC,. For a simple solution, we can use approximations
similar to (3-12) and (3-14); that is,

(1

i2
4j ﬁC,Hu Nkpma) msn
w(n, m) = { (3-60)
1 [1_ _._':!1 (}rkﬁf,,)] —n
Fac,| 1R\ ca

where p,, is the distance between the midpoints of AC,, and AC,. For a higher-
order solution, it is convenient to further subdivide C and use the methods of
Section 3-3. For example, expansion functions of the type shown in Fig. 3-4 can
be used, in which case the new Z_, are given by (3-24) or (3-25) with the [;
replaced by Z,;.

Alternatively, we can extend the operator as follows. Define the inner product

(A, B) = fpcA{p}ﬂl;p} dl (3-61)

for which L is self-adjoint, and consider a Galerkin solution. If J_ and J, are two
expansion functions for J, the elements of [/] are given by

b = (S LI,) = ﬁ:-f.{lﬂu.{F} dl (3-62)

Substituting from (3-56), we have

o,
L §c[jm.r_ Ay +J, E] dli (3-63)

where the subscripts n on A and @ denote that they are due to J,. The first term
in the brackets of (3-63) involves no derivatives, and gives no difficulty when
pulse functions are used. The second term in the brackets may be integrated
once by parts with respect to /. Boundary terms vanish if J, is in the domain of
L, and (3-63) reduces to

dl,

Lo jic[jwj_ Ay = =F m_] dl (3-64)

An extended operator can now be defined by specifying that (3-64) apply even
for J not in the original domain of L. This is permissible, because nothing is
changed if J is in the original domain, Equation (3-64) gives convergent results
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if J is expanded in triangles and reasonably good results if pulses are used. How-
ever, in applying (3-64) to pulse functions, it is better to replace dJ/dl by a
difference approximation, in which case convergence is obtained in the limit. It
is of interest to note that the latter procedure leads to precisely the same formulas
as does the extended operator formulation given earlier, if the same approxima-
tions are used for H{?.

3.7. Dieleciric Cylinders

Consider a dielectric cylinder of cross section § in an impressed field E'. The
dielectric permittivity e may be a function of x and y, but not of the axial co-
ordinate z. The impressed field excites polarization currents J in the cylinder,
which produce a scattered field E*. Let L represent the operation relating — E*
to J; that is,

-E'=L{J) (3-65)

The total field is E' + E°, and the polarization current is related to the total
field by

J = jaxe — go)(E' + E) (3-66)
where g, is the permittivity of free space. Combining (3-65) and (3-66), we have

1

——— — 4 i -
jae—e0)" " 67

L) +

within S. In this equation E' is known, and J is the unknown to be determined.
For the case of TM fields, the E and J have only z components, and L is
given by (3-5); that is,

LN =7 [[ 1@)HP Kl — p') s (3-68)

This is an integral operator, and (3-67) can be solved by the method of moments
in a straightforward manner. The simplest procedure is to expand J, in terms of
pulse functions and use a point-matching procedure for testing. The details can
be found in the literature [6]. An evaluation of the /,, is found to be insensitive
to the shape of the subareas As, into which S is divided. Hence the [_, can be
conveniently evaluated by treating the As, as if they were of circular cross
section, which gives a particularly simple solution of excellent accuracy. Figure
3-10 shows the scattering cross section of a cylindrical shell computed by this
method, and compares it to the exact eigenfunction solution. A total of 36 sub-
areas of equal size were used for the matrix solution.
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Figure 3-10. Scattered power pattern for a circular dielectric tube, o = 0.25A, b= 0.30A,
gr == 4, TM case (after Richmond [6]).

In the TE case, L is the more complicated operator
L(J) = jwA(J) + V&(J) (3-69)

where A and @ are the potential integrals

4j A(J) = p j j J(p)HP(k|p — p']) ds’ (3-70)
5

4 o) =1 fI(- =V 3)HPkIp - p1) ds (311)

Because of the derivatives in (3-69) and (3-71), more care is necessary in applying
the method of moments. Strictly speaking, pulse functions are not in the domain
of L, and hence should not be used for expanding J. However, if they are used
in conjunction with a point-matching procedure, usable results can be obtained
[7]. Figure 3-11 shows the scattering cross section of the cylindrical shell com-
puted by this procedure using 38 subareas, and compares it to the eigenfunction
solution. Note that, because of the crude treatment of the problem, the error is
appreciable. Since /o is a continuous linear functional of J, we should expect
even more error in J itself. Furthermore, we should not expect the solution to
converge to the exact solution as the number of subareas is increased. More
accurate computations can be obtained by using expansion functions in the
domain of L. Alternatively, we can continue to use pulse functidns with either
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Figure 3-11. Seattered power pattern for a circular dielectric tube, a = 0.254, b= 0.304,
£y = 4, TE case (after Richmond [T]).

an approximate L or an extended L, as discussed in Section 3-6. If properly
done, TE solutions of accuracy comparable to that for TM solutions should be
obtainable.

If the cylinder has a permeability u different from pu, (that of free space),
but & = &, the problem is dual to that just treated. The appropriate equation is”
dual to (3-67), that is, obtained from (3-67) by replacing & by u, E by H, and
J by M (magnetic current). Solution proceeds in the same manner as for the di-
electric case. If the cylinder has both u different from p; and & different from &,
the problem is more difficult. It involves a combination of (3-67) and its dual
equation. We shall discuss this further in Section 5-7.

If the cylinder is homogeneous in both £ and u, the problem can be formu-
lated in terms of E and H on the contour C which bounds the cylinder [4]. This
has the advantage of reducing the problem from two dimensions to one dimen-
sion; hence fewer subsections are needed for a solution. However, the procedure
cannot be applied to inhomogeneous cylinders. g
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CHAPTER

4

Wire Antennas and Seatterers

4-.1. Formulation of the Problem

In this chapter we consider wire antennas and scatterers of arbitrary shape. These
are perhaps the simplest three-dimensional problems because the current is con-
strained to flow in the axial direction of the wire. They are also important
practical problems, particularly the wire antenna, which is in widespread use.
The distinction between antennas and scatterers is primarily that of the location
of the source. If the source is on the object it is considered an antenna; if the
source is distant from the object it is viewed as a scatterer. Hence, by analyzing
the object in an arbitrary impressed field, we are effectively considering both
cases at once.

The solution is obtained by applying the method of moments to an appro-
priate superposition integral. The conventional retarded potential integral
formulas are used for the analysis for simplicity, although other forms can be
used [1]. The operator equation differs from classical integral equations in that
derivatives appear as well as integrals. As discussed in Section 3-6, this type of
equation can be handled by approximating the derivatives by finite differences.

A particularly descriptive exposition of the solution can be made in terms of
network parameters. To effect a solution, the wire is considered as N short
segments connected together. The end points of each segment define a pair of
terminals in space. These N pairs of terminals can be thought of as forming an
N-port network, and the wire object is obtained by short-circuiting all ports of
the network. We can determine the impedance matrix for the N-port network
by applying a current source to each port in turn, and calculating the open
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circuit voltages at all ports. This procedure involves only current elements in
empty space. The admittance matrix is the inverse of the impedance matrix.
Once the admittance matrix is known, the port currents (current distribution on
the wire) are found for any particular voltage excitation (applied field) by matrix
multiplication. These matrices are special cases of the generalized network para-
meters discussed in Chapter 5.

The equation for the charge density ¢ and current J on a conducting body §
in a known impressed field E' is obtained as follows. The scattered field E’,
produced by ¢ and J, is expressed in terms of retarded potential integrals, and
the boundary conditionn % (E' + E*) = 0 on § is applied. This is summarized

by

E' = —jwA — VO (4-1)
o= kR
A=F§J —— ds (4-2)
1 g~ IR
= - d 4-3
¥ aﬁq 4n R g (4-3)
il
gw—¥J (4-4)
jew
nxE'=-nxE onS (4-5)

Figure 4-1(a) represents an arbitrary thin-wire object, for which the following
approximations are made: (1) The current is assumed to flow only in the
¥

Wire axis

dl

{a) (b}
Figure 4-1. (a) Section of wire. (b) Wire axis divided into [N segments.
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direction of the wire axis, (2) the current and charge densities are approximated
by filaments of current I and charge o on the wire axis, and (3) the boundary
condition (4-5) is applied only to the axial component of E at the wire surface.
To this approximation, (4-1) through (4-5) become

@

—E}= _jm‘d'_'ﬁ on § (4-6)
A=u J‘. 10 i: di (4-7)
® = 5 | o) E:: di (4-8)
. =}f';:§ (4-9)

where / is the length variable along the wire axis and R is measured from a source
point on the axis to a field point on the wire surface.

4-2. Mairix Solution

A simple solution to the above equations is obtained as follows. Integrals are
approximated by the sum of integrals over N small segments, obtained by treat-
ing I and g as constant over each segment. Derivatives are approximated by
finite differences over the same intervals used for integration. Figure 4-1(b)
illustrates the division of the wire axis into N segments, and defines the notation.

The nth segment is identified by its starting point n, its midpoint n, and its

termination 7. An increment A/, denotes that between n and A, Al and Al}
denote increments shifted one-half segment minus or plus along /. The desired
approximations to (4-6) through (4-9) are then

_ sy sy 2P ﬁ_,_‘”(’;') (+10)
Amy=p T [ ‘4:: dl T @1
WL
oAt R (4-13)

with equations similar to (4-12) and (4-13) for 'I!(r;t) and r.r(:_r),

.
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The ¢’s are given in terms of the I's by (4-13); hence (4-10) can be written in
terms of the J(n) only. We can view the N equations represented by (4-10) as

the equations for an N-port network with terminal pairs (;:, .:t]. The voltage
applied to each port is approximately E' - Al,. Hence by defining matrices

CI(1) 7 CEN(1) - Al T
1(2) EY(2) - Al,
(=] : [Vl1=| (4-14)
LI(N) ] _E'(N) - Al |

we can rewrite (4-10) in matrix form as
[V1=[Z1[1] (4-15)

The elements of the matrix [Z] can be obtained by substituting (4-11) to (4-13)
in (4-10) and rearranging in the form of (4-15)¥Alternatively, we can apply
(4-10) to (4-13) to two isolated elements and obtain the impedance elements
directly. This latter procedure will be used because it is somewhat easier to
follow.

Consider two representative elements of the wire scatterer, as shown in
Fig. 4-2. The integrals in (4-11) and (4-12) are of the same form, and are denoted

by JkR
[ ¢ =
W(n, m) = di gan
al- IMH 4ER' Y - S _l.:l::. ; Y _l-'--l"l"lr -

i

where R, is the distance from a point on Al, to the point m. Eyrnhﬁls + and —
are used over m and » when appropriate. Evaluation of the  will be considered
in Section 4-3. Let element n of Fig. 4-2 consist of a current filament /{n), and
two charge filaments of net charge

aln) = fm 1) q) = ;—; I(n) (-17)

F-*

Figure 4-2. Two segments of & wire.
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where g = ¢ Al. The vector potential at m due to f(n) is, by (4-11),

The scalar potentials at m and m due to the charges (4-17) are, by (4-12), '

m(ﬁ:) - Jim :I{njl,l’-r(;, Ja) - :(nm[ﬁ, r?:) o

olm) = — 1w . ) - 105, )

jwe

Substituting from (4-18) and (4-19) in (4-10), and forming Z_, = E'(m) = Al_/I(n),
we obtain

Zu = jon B, B ) + = (3, ) = 95, 2) = 0 3. ) + 95, )
@-20)

This result applies for self-impedances (m = n) as well as for mutual impedances.
When the two current elements are widely separated, a simpler formula based
on the radiation field from a current element can be used.

The wire object is completely characterized by its impedance matrix, subject,
of course, to the approximations involved. The object is defined by 2N points
on the wire axis, plus the wire radius. The impedance elements are calculated by
(4-20), and the voltage matrix is determined by the impressed field, according to
(4-14). The current at N points on the scatterer is then given by the current
matrix, obtained from the inversion of (4-15) as

(MN=[Yivl [Y1=[Z77] (4-21)
AY

Once the current distribution is known, parameters of interest such as field
patterns, input impedances, echo areas, etc., can be calculated by numerically
evaluating the appropriate formulas.

According to the method of moments, the above solution is equivalent to
using pulse functions for the expansion of both current and charge, and point
matching for testing. To avoid differentiation, the procedure is applied to an
approximate operator, obtained by replacing derivatives by finite differences.
In terms of the general notation of Section 1-3, the I{n) correspond to the «,,
the Z,, to the [, and the V_, to the g,,.

L It should be noted that the end point of a wire is treated as the center of an
interval with zero current. This is suggested in Fig. 4-1(b) by starting the intervals
one-half subsection in from the wire ends. It is mathematically equivalent to the
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boundary condition / = 0 at the ends of a wire. Note that the charge is not zero
at the wire ends, which is consistent with representing charge as extending one-
half interval beyond Al

4-3. Evaluaiion of Z.,

The impedance elements (4-20) are known once y(n, m) is evaluated. For this,
we construct a local coordinate system with origin at n and the z axis along
Al,, as shown in Fig. 4-3. Then

: & JER

1
W, m) = 7 J‘; e (4-22)

where

1
" = dm #
R_-l‘fp - ek (4-23)

Jai+z22 m=n

and a is the wire radius. One approximation for  can be obtained by expanding
the exponential in a Maclaurin series, obtaining

2
(i—jk-“—n_+—-—)dz (4-24)

Figure 4-3. Geometry for evaluating yi(m, n).
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The first term is identical to the electrostatic potential of a filament of charge.
The second term is independent of R,. For m = n, these two terms give reason-
ably good accuracy, and

win, n) =~ log (-%) e (4-25)

2n Al al an

For m # n, the crudest approximation is to consider R,, constant in the integra-
tion (4-22), and hence

E"‘..i“"nn

4nR,,

Y(m, n) = (4-26)

where R, is the distance from n to m. The use of (4-25) and (4-26) is equivalent
to the use of approximations (3-12) and (3-14) in the two-dimensional case.
Since (4-26) is not exact in the limit Al — 0, there will be a residual error in the
solution, as discussed in the example of Section 3-2.

Better solutions can be obtained either by a more accurate evaluation of
(4-22) for the case m $ n, or by the methods of Section 3-3. Formulas for more
accurate evaluation of (4-22) are given in the literature [2]. However, the
numerical procedures of Section 3-3 are just as good, and they also take the

‘curvature of the wire into account. For example, each Al of Fig. 4-1(b) can be
subdivided into two subsections, in the manner of Fig. 3-4. Then, analogous to
(3-24), we have

Zon=(3221 + Z22 +1Z33)mn (4-27)

Even further subdivision of the Al may be used, especially for the elements
Zopy Zyn—y, and Z_ .4, although (4-27) is accurate enough for most purposes.
If desired, the Galerkin approximation equivalent to (3-25) may be used instead
of (4-27). In this case the ¥, should also be changed to the appropriate Galerkin
approximation.

4-4. Wire Antennas

A wire excited by a lumped voltage source at one or more points along its length
is a wire antenna. For the wire excited in the ith interval, the applied voltage

matrix (4-14) is

[(V1=|Vi (4-28)

o,
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that is, all elements zero except the ith, which is equal to the source voltage. The
current distribution is given by (4-21), which for the [V] of (4-28) becomes

LIl=¥ (4-29)

| Yid

Hence, the ith column of the admittance matrix is the current distribution for
a unit voltage source applied to the ith interval. Inversion of the impedance
matrix therefore simultaneously gives the current distributions for the antenna
excited in any arbitrary interval along its length. The diagonal elements ¥ of
the admittance matrix are the input admittances of the wire object fed in the ith
interval, and the ¥;; are the transfer admittances between a port in the ith
interval and one in the jth interval.

The radiation pattern of a wire antenna is obtained by treating the antenna
as an array .of & current elements f{n) Al,. By standard formulas, the far-zone
vector potential is given by

Fg—ﬁ'u
A= 2 I(n) Al e oo én (4-30)

dnr, 5

where ry and r, are the radius vectors to the distant field point and to the source
points, respectively, and £, are the angles between ry and r,. The far-zone field
components are [3]

where 8 and ¢ are the conventional spherical coordinate angles.

An alternative derivation of the radiation pattern can be obtained by reci-
procity. Figure 4-4 represents a distant current element 1, (rdenotes * receiver '),
adjusted to produce the unit plane wave

E =u,e Mt (4-32)

in the vicinity of the antenna. Here u, is a unit vector specifying the polarization
of the wave, k, is a wavenumber vector pointing in the direction of travel of the
wave, and r,, is the radius vector to a point n on the antenna. By reciprocity [3],

1
E, = E - dl (4-33)

] l' .i'r antenna

where E, is the u, component of E from the antenna and [ is the current on the
antenna. The constant 1/[/, is that needed to produce a plane wave of unit
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amplitude at the origin, which is

1 wupe™
I,  jdnrg

(4-34)

A numerical approximation to (4-33) is obtained by defining a voltage matrix

(E'(1)- Al ]
E'(2)- Al

[V]= (4-35)

LEW) - Al
where E' is given by (4-32), and approximating (4-33) as the matrix product

_cope o
Er e _,"4111‘.; ['Fl'][f]

= fkrg
=2 [P (4-36)
jdmry

where [’] denotes the transpose of [V]. Note that [F"] is the same kind of matrix
as (4-14); that is, it is the voltage matrix for plane-wave excitation of the wire.
Equation (4-36) remains valid for an arbitrary excitation [F]; it is not restricted

to the single source excitation (4-28).
The power-gain pattern for the u, component of the radiation field is given by

_ 4w |EO, )
90, ) = =2 =

{4-37)

where n = +/p/e is the intrinsic impedance of space and P, is the power input
to the antenna

Py, = Re {[P*1[I*]} = Re {[*1LY*1[V"*]) (4-38)

F

n,

Figure d-4. Wire antenna and distant dipole.
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For the special case of a single source, equation (4-28), P,, becomes simply
Re (| V,|*Y ). Using (4-36) and (4-38) in (4-37), we have

nk? V16, $)ILYILVII
4n Re {[VI[Y*IIV*]}

g(6, ¢) = (4-39)

where [V'(0, ¢)] is given by (4-35) for various angles of incidence & and ¢.
Equation (4-39) gives the gain pattern for only a single polarization of the
radiation field. If the total power-gain pattern is desired, the g's for two nrthng-
onal polarizations may be added together.

Example. We here show some results for straight-wire antennas, of length
[ and diameter 2a. Several different methods were tried, such as the use of (4-27),
the use of triangle-expansion functions, and the use of triangles in Galerkin’s
method [2). These three procedures all give about the same accuracy, and the
actual computations were made by a triangle plus point-matching method. The
computations here are for length/diameter ratios [/2a = 74.2, corresponding to
Q = 2 log (//2a) = 10, and for N = 32 segments. An extensive table of other
computations, for //2a ranging from 10 to 2000, and /{4 to 2.1, is available [4].

To indicate the accuracy obtainable, Fig. 4-5 shows the input admittance
of the center-fed straight-wire antenna as a function of Ifi. It is compared to
the second-order variatiéhal solution of Hu [5] and to the second iteration of
Hallén’s equation as computed by King and Middleton [6]. The input con-
ductances are in close agreement, except for Hu's solution / > 1.34, in whicn
case her trial functions are inadequate. The susceptances show poorer agree-
ment, which is to be expected, since each solution treats the gap differently. In
the matrix solution of this chapter, the gap is treated as if it were /N in length.
In Hu's solution, no trial function is used which can represent the singularity in
charge at the source, and hence a low gap capacitance is obtained. Tha King-
Middleton computations use an iterative procedure, and the su sc:eptance depends
on the number of iterations. Since they use a delta-function source, an exact
solution must give infinite susceptance due to the infinite capacitance associated
with zero gap.

As a further check on the accuracy of our computations, we computed a
number of points using N = 64 segments. In going from N = 32 to N = 64, the
change in input susceptance was usually less than 1 per cent, and always less
than 3 per cent for the cases tried. The accuracy obtained using N segments and
pulse expansion functions, that is, equation (4-20), was about the same as that
obtained using N/2 segments and (4-27). Hence Fig. 4-5 is representative of a
64-segment solution using pulse expansion functions.

Figure 4-6 shows the input admittance to the antenna vs. /A for various
source positions along the wire. Qualitatively, the antenna can be viewed as a
set of resonators in parallel, and moving the feed point changes the coupling
to these resonances. Figure 4-7 shows the current distribution on the antenna
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Figure 4-5. Input admittance of a center-fed lincar antenna, [[2a = 74.2. (a) Conductance,
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{a) Conductance, (b) susceptance.
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Figure 4-8. Power-gain patterns for a linear antenna, |/2a = 74.2, for various feed points.

for various feed positions, for the length [ = 24. For the case [ = A2, the current
distribution is rather insensitive to feed position, a property well known to
antenna engineers. Figure 4-8 shows the gain pattern of the antenna for the
same cases for which the current is shown in Fig. 4-7. Each semicircular co-
ordinate line represents a gain of one half that of an isotropic radiator. Figure
4-8(d) shows that the antenna behaves like a traveling-wave antenna as the
source is moved to one end, an effect which becomes more pronounced as the
antenna is made longer. For the case [ = A/2 the gain pattern is relatively
insensitive to feed position, as expected.

4-5. Wire Scatierers

Consider now the field scattered by a wire object in a plane-wave incident field.
Figure 4-9 represents a scatterer and two distant current elements, /1, at the
transmitting point r,, and /1, at the receiving point r,. The /1, is adjusted to
produce a unit plane wave at the scatterer

E'=upe (4-40)

where the notation is analogous to that of (4-32). The voltage excitation matrix
(4-14) is then

"EX(1) + Al T
E(2)- Al,

[Vl= (4-41)

.E{N )+ Aly_
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i, I,

Wire scatterer

X

Figure 4-9. Definitions for plane-wave scaltering.

and the current [7] is given by (4-21) with [I] = [F"]. The field produced by [/]
can then be found by numerical evaluation of the conventional formulas.

The distant scattered field can also be evaluated by reciprocity, the same as
the antenna case. A dipole I1, at the receiving point is adjusted to produce the
unit plane wave (4-32) at the scatterer. The scattered field is then given by (4-36)

with [F*] replaced by [F7]; that is,

E, = ‘”J‘; PN (4-42)

A parameter of interest is the bistatic scattering cross section a, defined as that
area for which the incident wave contains sufficient power to produce the field
E, by omnidirectional radiation. In equation form, this is

¢ = 4ar?|E,|*

Iki
=1- I[l?"?r[f]['“’]I’ (4-43)

For the monostatic cross section, set [F"] = [V'] in (4-43). The cross section
depends on the polarization of the incident wave and of the receiver. A better
description of the scatterer can be made 1n terms of a scattering matrix [7].

Another parameter of interest is the total scattering cross section a,, defined
as the ratio of the total scattered power to the power density of the incident
wave. The total power radiated by [I] is given by (4-38) for any excitation;
therefore the scattered power is given by (4-38) with [V*] replaced by [F']. The
incident power density is 1/n; hence

o, =n Re[VILY*I[V'™*] (4-44)

Note that g, is dependent on the polarization of the incident wave.
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Example. We here consider the plane-wave scattering behavior of a straight
piece of wire. The same [¥] matrix is used as for the antenna example of Section
4-4; hence the length/diameter ratio is [/2a = 74.2 and the number of segments
is N = 32. The computational procedure is a triangle plus point-matching one,
and corresponds in accuracy to that obtainable from (4-27). The accuracy is
also equivalent to that using (4-20) with N = 64 segments. Again an extensive
table of other computations for //2a from 10 to 2000 is available [4].

Figure 4-10 shows the backscattering cross section for the wire, broadside
incidence with E parallel to the wire. It is compared to Hu's second-order
variational solution [5]. Again agreement is good in the range L < 1.34, where
Hu’s trial functions are adequate. Computations using (4-20), that is, pulse
functions with N = 32 segments, give results almost as good as those shown in

4
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i

Figure 4.10. Backscattering crross section for a straight wire, [[Za = 74.2, broadside
incidence.
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(4-10). This is because /o is a continuous linear functional of 7, as are all far-
zone fields, and hence is insensitive to small errors in I. Furthermore, since the
plane-wave excitation is a well-behaved impressed field, the convergence of the
solution is much faster than for the antenna problem.

Figure 4-11 shows the current induced on a wire of length / = 21 as the angle
of the incidence of the plane wave is changed. In each case the magnitude of the
component of E parallel to the wire is 1 volt per wavelength, and the current 1s
in milliamperes. Figure 4-12 shows the bistatic scattering cross sections for the
same cases as the current is shown in Fig. 4-11. The angle of plane-wave in-
cidence in each case is shown by an arrow. Each semicircular coordinate line

Y o - 180" ir -1 180
Y ~4% E. 6 ~ 90"
EL-i \ - do B E4 e 2o @
3 s R o v i Ll R | E
Ei- - =9 Ei-____‘.l \'.—'r = "

0 4 ! ~180° f | 180"

4 2 32 i . 14 12 a4 I 1N
{#) Angle of incidence - 90" {b) Angle of incidence 75
B h‘__.._‘_r’ r'lﬂ-l.'l"
L3
6 F L.
E’ il " E—
- .-f'f 0 2 =
] -__.ul‘ = "E
E 2t P 4% E
L. ¥
0 | i I H —180"
i74 12 34 !
(c) Angle of incidence = 60°
VAGAVIN Y
E 4 r"! ﬁ ] Eh E'
Navm/ava'=E

] 4 - —180° :

B ] 2 34 I 14 2 34 I
i) Angle of incidence - 30° {17 Angle of incidence » 15°

Figure 4-11. Carrent, magnitude (solid) and phase (dashed), on a straight wire scatterer,
[/2a = 74.2,1 = 2A, for various angles of incidence.

represents a cross section of 0.51%. Note that there is a large lobe at an angle of
scatter equal to the angle of incidence, but on the opposite side of the direction
normal to the wire. This corresponds to specular reflection, and becomes more
pronounced as the wire is made longer. For the special case [ = A2, both the
current on the wire and the scattering pattern are insensitive to the angle of
incidence of the plane-wave excitation, as expected.
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Figure 4-12. Bistatic scaltering cross-section patterns for a straight wire seatterer, [/2a =
74.2, l = 2, for various angles of incidence.

4-8. Discussion

The solution of this chapter is a numerical approximation applied to the potential
integral formulation of the problem. This equation can be transformed into
other forms, the most common of which is Hallén’s equation [1]. However, as
long as a valid numerical procedure is used, there is no advantage to such trans-
formations, For example, Hallén's equation is an integral equation obtained
from (4-6) by a Green's function technique. A numerical solution of Hallén's
equation can be related to our solution by a matrix Green's function technique.
Hence, assuming equivalent approximations, the same accuracy is obtained
from either (4-6) or Hallén's equation. We have verified this by making computa-
tions both ways, obtaining identical solutions.

A discussion of some of the problems associated with the convergence of the
solution is in order. If the wire has no ends (for example, a loop), and if the


Aaron
Rectangle


=0 Wire Antennas and Scatterers [Ch. 4

impressed field i1s well behaved (for example, an incident plane wave), solutions
of high accuracy are obtained by the procedures of this chapter. If the wire has
ends, the charge is singular (or almost so) at the ends. This singularity is poorly
represented by a pulse-function basis, and hence is not accurately treated by the
present solution. However, computations appear to justify our procedure, show-
ing that this charge singularity has little effect on the current distribution, and
almost no effect on far-zone quantities, such as radiation patterns and scattering
cross sections. An accurate treatment of these end effects can be accomplished
by including the appropriate functions in the basis, but the solution then depends
on the shape of the wire ends (for example, hollow, rounded, etc.). Measure-
ments on physical wire antennas have shown that the shape of wire ends has no
significant effect on the input impedance [8].

There are also singularities at any source along the wire, particularly if the
source is represented by an impulse function. An exact solution depends on the
details of the source, which is undesirable for general procedures. A pulse basis
cannot adequately account for singularities at the source, and they again are not
accurately treated in our matrix solution. From an engineering standpoint, this
is actually desirable, since to account for the type of source would destroy the
generality of the solution. It has been found that the input conductance to a wire
antenna is practically independent of the type of source, but the input susceptance
depends on the source, both in the mathematical and physical problems.

The concept of viewing an object as an N-port network was here introduced
as a consequence of the particular approximations made in the solution. Ac-
tually, the concept is quite general, being applicable to any body. We shall dis-
cuss this in terms of generalized network parameters in Chapter 5. The im-
pedance or admittance form of solution is also convenient for the analysis of
loaded antennas and scatterers, discussed in Chapter 6. The loads may be either
lumped impedance elements, or continuous loads, as, for example, a dielectric

coated conductor.
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CHAFTER

5

Generalized
Network Parameters

3=1. Conduciing Bodies

In Chapter 4 a solution in terms of an impedance matrix was obtained for wire
objects, using somewhat qualitative reasoning. We here consider the general
case, showing that the concept of *“generalized impedance parameters™ is
rigorous and valid for any conducting body. The formulas of Chapter 4 are a
special case of those of this section.

Figure 5-1 represents a material body in an impressed field E' produced by
external sources. For a perfect conductor, surface currents J are induced on §,
which produce a scattered field E*. This scattered field can be found in terms of
J by the potential integral method, equations (4-1) to (4-4). The boundary
condition for the problem is (4-5); that is, tangential components of (E' + E%)
vanish on S. Defining the operator

L(J} = (= Er}:n (5-1)
=(jwA + VD), |

Figure 5-1. Material body and external source.

L}
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we can write the equation for J as
L(J) = (E),, (5-2)

where ()., means the tangential components of the bracketed quantity on 5.
A suitable inner product for the problem is

(J,E) = JJJ-Eds (5-3)

which is a quantity called reaction [1]. Note that (5-3) involves only tangential
components of E, since J is tangential to S.

We now apply the methog of moments to (5-2). Let J be expanded in a series
of basis functions J,, J5, J3, . .., defined on §, as

J=Y1,3, | (5-4)

where the [, are complex coefficients. Substituting (5-4) in (5-2), and utilizing
the linearity of L, we have

g IL(J,) = (E)y, (5-5)

Now define a set of testing functions W,, W,, W,,..., which are tangential
vectors on §; that is, they are current-type vectors. (In Galerkin's method, they
would be equal to the J_.) The method of moments requires that (5-5) be valid
for the inner product with each W_,; that is,

. E fn(“rm:' LJI} - {wl'ﬂ'! E'} [5'5}

for all m. The subscript *“ tan ** has been dropped from E', since the inner products
involve only tangential components. We define matrices

-f'l {WI,E'L"

"IIZ [I"':.. = <w1lEi>

] = (5-7)

b

(W, LI> (W, LI
[Zna] = [{W3, LIS (W, LI - (5-8)
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and rewrite (5-6) in matrix form as
[Zpa](1a] = [Va] (5-9)

The elements of [£,,] are called generalized impedances, those of [I,] generalized
currents, and those of [V,] generalized voltages. The generalized impedances are
the negative of reaction, as defined by Rumsey [1].

A solution for the expansion coefficients of J is given by the inversion of

(5-9), or
[1.] = [Yeul[Vnl (5-10)

where

[Yom] = [Zow (5-11)
is the generalized admittance matrix. Defining the matrix offunctions
J1=0[;, J: 3 -] (5-12)
we can write the solution (5-4) and (5-10) as
J = [1.1[1] = LI Y.ml[Va] (5-13)

This result is usually approximate but may be exact in some cases.

Note that the development of this section is exactly dual to that of Section
1-3; that is, it is merely the method of moments applied to a particular electro-
magnetic problem. The designation of the matrices as [V], [{], [£], and [¥] is
done, of course, to call attention to the analogy with multiport network theory
[2). The conducting body is characterized by its generalized impedance matrix
[Z], or its inverse, the generalized admittance matrix [¥]. These matrices depend
on the geometry of the body and on the frequency, but not on the impressed
field. The impressed electric field determines the voltage excitation [V] of the
generalized network according to (5-7). The resultant current [/]then corresponds
to the matrix of expansion coefficients for the current (35-4).

Example. The circular wire loop in an applied electromagnetic field will be
used to illustrate these concepts. Although this problem can be treated quite
well by the methods of Chapter 4, the alternative solution given here has the
advantage of yielding a diagonal impedance matrix. Hence matrix inversion is
trivial, and a larger series of expansion functions can be used. This simplification
of solution is due to the circular symmetry of the problem.

Figure 3-2 shows the loop geometry and defines the coordinate system. We
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start with the potential integral formulation of (4-6) to (4-9), and specialize it
to the circular loop. The result is

P 160
Eﬂ —;-:1:-.4,, T h f.li;la (5-14)
in . P
Ag=p | K¢ cos(d~¢) 75— bdé (5-15)
= 1=z =JjkR
Wias 3 iy i PO (5-16)

e Jg E:}‘-:F 4nR

where R is the distance from the wire axis to a point on the surface at p = b;
that 1s,

R =/b?+ b* ~2bTcos (b — ¢) + a®
= b./4sin® (¢ — ¢)/2 + (a/b)? (5-17)
Here a is the wire radius and b the loop radius. If b 2 a, (5-17) is approximately

true for all points on the wire surface. To write (5-14) to (5-16) in the form of
(5-2), we define the operator

I , 1 dl d7]e R
L{I}-.L [;wybfﬂﬁsitﬁ—qi'}—mrﬁd—‘# iR

dep’ (5-18)

Figure 5-2. Circular wire loop and coordinale system.
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MNow the problem is stated by
L(I) = E} (5-19)

where Ej is the impressed field evaluated at p = b, z = 0. This assumes that E}
is a function only of ¢ ; that is, it does not vary over the cross section of the wire.
For a generalized impedance solution, define the inner product

in
ILE)= L I(¢)E(d)b dd (5-20)

which is a specialization of (5-3). For expansion functions, choose f, = /™, so
that (5-4) becomes

K¢) =) I,e™ (5-21)

where I, are constants. For testing functions, choose
W,y = f¥ = g™/ (5-22)

which form a biorthogonal set with the f,. Equations (5-21) and (5-22) are chosen
50 that a complex Fourier series solution is obtained. Note that both the f, and
w, have derivatives of all orders, and hence the differentiation in (5-18) will cause
no difficulty. The procedure of the method of moments now leads directly to
(5-9), where the elements of [V] are

im
Vo= (W B9 = [ €7 ™EY)b do (5-23)
and the elements of [Z] are
Zoy = (o Lf>= j:te-f'*u e")b dp (5-24)

A solution for the coefficients I, of the expansion (5-21) is then given by (5-10),
where [¥] is the inverse of [Z].
We must now evaluate (5-24). For this, define the Fourier series

ge‘“= 5 K,enee) (5-25)
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where R is given by (5-17). The K, are the usual Fourier coefficients

| 2= p=JkBVdsinig/1+(a/b)?
K, = 2_.[ e~ ™ d¢ (5-26)
Tlo J4sin?¢[2 + (afb)?

Now substitute (5-25) in (5-18), and evaluate Lf, = Le/™. The result is

e _ d ‘"-”b

> —— Ky + Ky 4y) — = K ]ef'* (5-27)
The fact that LI varies as e/ when I varies as ¢/ is to be expected from sym-
metry considerations, since — L[ is the E, field from I. Now, using (5-27) and
(5-22) in (5-24), we have

Z,,=0 m#n (5-28)

1 n\?
Z, —j:n:qkb[ K, + EH'” (kb) K] (5-29)

Hence [£] is diagonal, and its inverse [¥] is also diagonal, with elements re-
ciprocal to (5-29). The solution (5-21) therefore reduces to the simple form

1$)=F 5= e (5-30)

For exact solutions, n ranges from — oo to +co; for computation we take n
from — N to + N. Note that Z,, = Z_,_,, which follows from (5-29) and (5-26).

Functions proportional to the K, of (5-26) were first evaluated by Oseen [3].
The simplest formulas for the K, are those of lizuka et al. [4].

j: —}tln-— -—_[ [n,,{x} + jJo(x)] dx (5-31)
Kos1 =K, + Qg 51(kb) + jJ 304 (kD) (5-32)

where J, is the Bessel function of the first kind of order n and £, is the Lommel-
Weber function of order n. Formulas (5-31) and (5-32) assume b ¥ a, and
apparently give good results when b = 10a. To illustrate the behavior of the
generalized impedances Z,, of (5-29), Fig. 5-3 shows plots of the lower-order
ones. Note that for small loops, all Z_, are capacitive except Zg,, which is
inductive. In fact, Z,, is the radiation impedance of a loop of uniform current.
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Figure 5-3. Generalized impedances 72, for the circular wire loop. (a) Hesistance,
(b} reactance.
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5-2. Poini-fed Aniennas

We use the term point-fed to denote excitation by a current source applied to a
pair of terminals separated a distance much smaller than a wavelength. This
corresponds to the lumped source of circuit theory. Figure 5-4 shows a typical
point-fed antenna problem, consisting of a conducting body excited by a current
source [, at its input port. The tangential component of the electric intensity is
zero on the conductor, and its line integral across the gap is the source voltageV,.
The input admittance to the antenna is

Yu= (5-33)

I
v,
When the method of moments is used, J is found by (5-13) and [, is computed

from J at the input terminals.
For an antenna with a single feed, the complex power input to the antenna is
P=V,I} =|V|’Y; (5-34)

and the time-average power input is

P;, = Re(P) = Re(|V,|*Y,) (5-33)

L“v—-—f
e

Figure 5-4. Point-fed antenna.
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Sometimes it is desired to evaluate the power input for a more complicated
excitation, for example, several lumped sources or an aperture excitation
(Section 5-4). In general, we have

P=—{E-J"ds (5-36)
where E° is the field from J. For a moment solution (5-13), this becomes
P=— ﬁ E - [J31[Y s d[Vr] ds (5-37)
Mow define the row matrix [F] to have elements
P, = ﬁ E - J*ds (5-38)

and, since E,, = —E,, on S, equation (5-37) can be written
P =[P YmllVal (5-39)

The time-average power is the real part of (5-39). In the special case J, = W, =
real (Galerkin's method with real expansion functions), equation (5-39) reduces
to (4-38).

To evaluate the radiation field, consider a current element /1, distant from
the original antenna, as shown for a wire antenna in Fig. 4-4. For conducting
antennas in general, analogous to (4-33) we have

l F
E, = § &30 (5-40)

F anleana

where E is the field from 71, and E, is the component of E in the direction of
I, due to the current J on the antenna. For the matrix solution (5-13), equation
(5-40) becomes

l F
E = 7 ﬁ E - [JI[Y.nl[V,] ds (5-41)
Hence if we define a ** receiver " voltage matrix [F]] with elements
Vi=qpE-3,ds (5-42)

equation (5-41) becomes

E, =7 [P0 Vo]V, (5-43)
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Finally, if fl, is adjusted to produce the unit plane wave (4-32) in the vicinity
of the antenna, then 1/7/, is given by (4-34), and

- jhe
E, =t [PrI[Y,n][Va] (5-44)

Jjénr

This is identical in form to (4-36), derived for the particular case of a subsectional
solution of wire antennas. It should be noted that formula (5-44) is general,
applying both to the near field and to the far field of the antenna.

Example. Consider the circular loop antenna, with feed at ¢ = 0, as shown
in Fig. 5-5. The solution of Section 5-1 applies directly, with an impressed field

V,
Ey = fﬂé} (5-45)

where 5(¢) is the Dirac delta function. The elements of the voltage excitation
matrix are found from (5-23) and (5-45) to be all equal to V;; that is,

V.l = Vv, (5-46)

Figure 5-5. Circular loop antenna and distant dipele.
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The current on the loop is then given by (5-30), which, since Z,, =2Z_,_,,
reduces to

V, = COS ng

I{d) = + 2¥, 5-47
() Zo 2z (5-47)
The input admittance is given by (5-33), where [, = I{(0); hence
o 1 = 1
Y, = v =z + z_gl z (5-48)

The loop input admittance is thus precisely the parallel combination of all
generalized impedances. This result is due to the diagonal nature of [¥].

The solution (5-47) and (5-48) was first obtained by Hallén [5], and first
computed by Storer [6]. However, Storer’s approximation of the infinite sum by
an integral to obtain the susceptance is open to question, as shown by later
computations [7]. We have computed the input admittance by (5-48) using terms
up to n = 20, the results being shown in Fig. 5-6. The input conductance con-
verges very rapidly, but the input susceptance does not. This is to be expected,
since an exact analysis for the impressed field (5-45) must give infinite input
capacitance because of the zero length gap.

For computation of the radiation pattern, we evaluate (5-42) for the currents
J, = uye™?® The coordinates #, and ¢, of the receiver are as defined in Fig. 5-5.
The current element /1. is perpendicular to r,, and may be pointed in either the
¢ or 0 directions. To respond to the ¢ component of the radiation field, I1,
points in the ¢ direction, and, from (5-42) and (4-32), we can determine [8]

V= nbj*tlei™[J_ . (kbsin0,) — J, _,(kbsin8)] (5-49)

Use of this in (5-44) gives the E; of the radiation field. To respond to the 8 com-

ponent of the radiation field, /1, points in the # direction, and, from (5-42) and
(4-32), we can calculate [8]

VI = —nbj"e™™" cos 8,[J,.,(kbsin6,) + J,_,(kbsin8,)]  (5-50)

Now (5-44) gives the E, component of the radiation field. Because of the diagonal
nature of [ ¥,.,), and the simple form (5-46) for [V,], equation (5-44) reduces to

wpe T
e il o (5-51)
YU jamr Ot E L

Here i = ¢ if (5-49) is used for V,, and i = @ if (5-50) is used for V. Computation
of the power gain pattern can be made by (4-39) for either the @ or ¢ component.
The sum of these two patterns is the total gain pattern.
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5-3. Conducting Scatterers

The general problem of scattering by conducting bodies is an extension of
Section 4-5. Consider a conducting body and two current elements, as shown in
Fig. 4-9 for the wire case. The current element /1, represents the receiver, and the
analysis is identical to that for the antenna problem, equations (5-40) to (5-44).
The current element [1, represents the transmitter, and it produces the impressed
field E' = E'. The excitation matrix [V,] = [V!] of (5-7) now has elements

Viy= (W, EY = § E' - W, ds (5-52)

Note that, for a Galerkin solution, this is of the same form as the measurement
matrix (5-42). When [1. is distant from the scatterer, (5-44) still applies. Finally,
the scattering cross section is given by (4-43); that is,

njk: L T
iy L7 Y]V ]l (5-33)

where the elements of [V]] are those of (5-42) with E" given by (4-32), and the
elements of [}] are those of (5-52) with E' given by (4-40).

Example. Consider plane-wave scattering by a circular wire loop. Let the
loop lie in the xy plane, and define transmitter and receiver coordinates as in
Fig. 4-9. The elements of [F]] are the same as those of the loop antenna, given
by (5-49) for the ¢-polarized case and (5-50) for the @-polarized case. The
elements of [V,] are the same as those of [V]] except that —n replaces n because
f. = & and w, = e/, Hence, for I, pointing in the ¢ direction, analogous
to (5-49) we have

V! = abj"*'e” ™ [J_, (kb sin 6,) — J,_ (kb sin ,)] (5-54)
For I, pointing in the & direction, analogous to (5-50) we have
V! = nbj"e /" cos 0,[J,+ (kb sin 8,) +~ J,_ (kb sin 6,)] (5-55)

The scattering cross section is then given by (5-53), which, because of the diagonal
nature of [¥], reduces to

Hiki 2

dn

Va Ve

LA

F =

(5-36)

Computations for the case of backscattering were first made by Koumyoujian [9],
who obtained the solution by the Rayleigh-Ritz variational procedure. Figure 5-7
shows the backscattering o/A® vs. b/A for some representative values of b/a.
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Figure 5-7. Backseallering cross section for a circalar loop seatterer, for varlous ratios bja.

Note that for any particular directions to the transmitter and receiver there are
actually four possible cases, correspondingto¢ — ¢, 8 — 0, ¢ — 0, and 6 — ¢
polarizations of the transmitter and receiver, respectively. A more complete
description of the scattering properties of a body can be made in terms of the
scattering matrix.

3-4. Aperiure Aniennas

An aperture antenna is a conducting body with one or more apertures in it,
through which electromagnetic energy may pass. A knowledge of the tangen-
tial components of the E vector over a closed surface S is sufficient to unique-
ly specify the field external to S [10]. Over a conductor E,, = 0; hence a
knowledge of E,, over the apertures is sufficient to determine the external
field. Figure 5-8 represents a conducting body with an aperture, shown dashed.
Let § be a closed surface consisting of both the conductor and aperture and J
be a distribution of surface current on §. Then the problem is represented by

L(J) = —E,, (5-57)

where L is the operator defined by (5-1), and E,, is the known field on §. A
solution of (5-57) determines J, which on the conductor is the current due to the
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aperiure (E ; given)

conductor

E: =0

Figure 5-8. Conducting body with an aperture antenna.

aperture excitation, and over the aperture is an equivalent current [10]. In (5-57)
the E,,, is that due to J, and hence is — E,,, of (5-2).

To solve (5-57), we can use a moment solution as in (5-3) through (5-13).
If the basis functions are sufficiently general, the generalized impedance matrix
is the same one as the one used for point-fed antennas and for scatterers. In fact,
a point-fed antenna can be viewed as an aperture antenna in which the gap at
the feed is the aperture. Hence the analysis of aperture antennas is basically the
same as that for point-fed antennas if the excitation matrix [V.] is kept general.
For aperture antennas, its elements are given by

V,=—(W,,E) = — ﬂ E-W,ds (5-58)

aperiure

Note that the integral need be taken only over the aperture, since E,,, = 0 on
the conductor. Once the solution (5-13) is obtained, parameters such as complex
power is given by (5-39) and the radiation field by (5-44).

Example. Consider an aperture in the elliptical conducting cylinder analyzed
in the example of Section 3-2. Let the aperture be 4/2 in width, and assume a
field

E, =cos ks (5-59)

in the aperture. Figure 5-9(a) shows the cylinder and aperture, centered on the
x axis. The variable 5 15 measured about the cylinder in the counterclockwise
direction, starting on the positive x axis. The basis functions for J; are the step
functions (3-8), and point matching is used for testing. The impedance matrix
is related to the [[_] matrix according to (3-22). The measurement matrix
continues to be given by (3-23), which is the two-dimensional analogue to (5-42).
The excitation matrix, instead of (3-21), becomes

AC,, cos ks, in the aperture

Vo = 0 on the conductor

(5-60)
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Conducting 1
cylinder s | X

fa) -3}

Figure 5-9. (a) Conducting elliptic cylinder with \/2 aperture, TM field. (b) Radiation field
pattern,

The radiation field is given by the two-dimensional analogue to (5-44), which
is of the same matrix form, but with different radial dependence. To be explicit,

_ —Jope™ M
L ko [P Yaml (V] (3-61)

where p is the two-dimensional radius vector from the origin. The radiation
pattern of |E,| as computed by the above formulas is shown in Fig. 5-9(b).

5-5. Dieleciric Bodies

Let the material body of Fig. 5-1 be a dielectric with permittivity &, which may
be a function of position, or even a tensor. The incident field E’ induces a
polarization current J in the dielectric, which produces a scattered field E*. Let
L be the operator which relates —E* to J; that is,

L(J) = —E* = jwA + V® (5-62)
where .
A(r) = pip ;[ﬂ J(r) ‘:“R dr’ (5-63)
1 3 e~ fkR :
o0 = - [[f a0 G ae (5-64)

V+J = —jwg (5-65)
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and R = |r — r'|. The total field at any point is E' + E*, and within the material
body the polarization current is given by

J = jole — e)(E' + E) (5-66)

where ¢ is the permeability of the body and &, that of free space. Using (5-62),
we can rewrite (5-66) as

J L

L(T) + .i'ﬂ-*_i'-'lﬂ =K in V (5-67)

where Ae = & — &, and V is the region occupied by the material body. This is
the appropriate equation for J. The left side of (5-67) could be redefined as a

single operation on J, but we shall not do so.
For a solution, define the inner product

{J,E}nﬂf.!-Edr (5-68)

which is again a reaction [1]. This differs from (5-3) only in that the integral is
now a volume integral. Define basis functions J,, J;, J4, ..., over ¥, and expand
J as

I=Y13, (5-69)

where the I, are complex constants. Define testing functions W,, W;, W,,...,
over ¥, and apply the method of moments to (5-67). The resulting equations
are

J, ‘

g I,< W, L], +

jw

for all m. To place this in matrix form, define [I,] and [V,,] according to (5-7),
[Z,..] according to (5-8), and the additional matrix

i J! J] u ..-I
<“’m> <““* o &s

2,.] = J, J, (5-71)
<w"“1mﬁe> <w”1wms>
b Y e o B oo e e
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Now (5-70) can be written

[Znn + Zpa[1,] = [Va] (5-72)
The solution for the expansion coefficients [I,] is again given by (5-10), where
(Y] =[(Z + 2)22] (5-73)

The solution for the polarization current is represented by (5-13), which may be
either approximate or exact, depending on the J, and W,.

The matrix equation (5-72) was written in terms of two impedance matrices
to call attention to an interesting analogy with N-port network theory, as
represented by Fig. 5-10. The matrix [Z] depends only on the geometry of the

o b
(2 ] | O; 1 [Zum]
dependent 7 ; independent
on € 1 3 of €

Figure 5-10. Network analogue for a diclectric body in an impressed held.

body and the wavelength, whereas the matrix [2] depends also on e The im-
pressed electric field determines the voltage excitation of these two networks
connected in series, and the resultant terminal currents are the expansion coeffi-
cients [I.]. Note that as £ — oo, the [2] becomes a short-circuit on each port, and
the network analogy becomes that of a conducting body. Hence we can think
of [2] as expressing the loading of space due to the permittivity of a body, with
a conductor short-circuiting space. This latter picture is the one used in Chapter 4
for wire objects. Finally, if a subsectional method is used, the [Z] becomes a
diagonal matrix, as discussed in Section 5-7. For examples of the application
of these techniques to physical problems, refer to the analysis of dielectric
cylinders discussed in Section 3-7.

5-8. Magnetic Bodies

If the body of Fig. 5-1 is magnetic, but not dielectric, the problem is dual to the
dielectric case. The solution is obtained by replacing E by H, J by M (magnetic
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current), u by £, and £ by u in Eqgs. (5-62) to (5-65). To be specific,

L(M) = —H’ = joA™ + VO™ (5-74)
where
m ’ £ i
A™(r) =g, lﬂ! M(r') o dr (5-75)
i, 1 [ F E-M ¥
- m" q(F) o de (5-76)
VM= —jog" (5-77)

Here the superscript m has been added to denote * magnetic quantity.” Instead
of (5-66), we have the magnetization current M given by

M = jo(u — p)(H' + HY) (5-78)

where u is the permeability of the body and y, that of free space. The operator
equation is then dual to (5-67), or

M ¢
L(M) + A =H in V (5-79)

where Ay = 4 — py and V is the volume of the body.
To solve (5-79) for M, define the inner product

(M, H) =mm- H dr (5-80)

which is dual to (5-68), and is the negative of reaction [1]. Define basis functions
M, M,, M,,..., over V, and expand M as

M=Y VM, (5-81)

where the ¥V, are complex constants. Define testing functions W,, W,, W,,...,
over V, and apply the method of moments to (5-79). The result is

M, \ i
g ﬂ<wm LM- +M> = {wm H} {5-32}
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for all m. This can again be placed in matrix form by defining

e (W,, Hi)
va=|"| wa=|V2H (5-83)
(W, LM, (W, LM,) -
[Yual = {Wzm LML} W,, LM, - (5-84)
i M, > i
Wy, — ) ve
< ¥ jo ﬁ#> < Ja ﬁ.ﬂ
[f..] = < (5-83)
r
and rewriting (5-82) as
[Yeu + £1V] = [1] (5-86)
The solution for the expansion coefficients is
v =Y + D)) (5-87)
and the solution for the magnetization current is
= [M,II(Y + $).0101..] (5-88)

which 1s dual to (5-13).

Again we have a suggestive N-port network analogy to (5-86), represented
by Fig. 5-11. Here the matrix [ Y] depends on the geometry and wavelength, and
[¥P] depends also on u. The impressed magnetic field determines the current
excitation of these two networks connected in parallel, and the resultant ter-
minal voltages are the expansion coefficients [V,]. We can interpret [¥] as
representing the loading of space due to the permeability of the body, analogous
to [Z] in the dielectric case. Again [¥] becomes a diagonal matrix if a sub-
sectional method is used, as discussed in Section 5-7.

53-7. Bodies both Magnetic and Dieleciric

If the body of Fig. 5-1 has both £ and u different from their free-space values,
a combination of the preceding two cases can be used. For this, in addition to
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L +H
(B ¢ b CH T
dependent independent
o of u

[ ¢i" "

Figure 5-11. Network analogue for a8 magnetic body in an impressed ficld.

the relationship between electric current and its electric field, (5-62), and mag-
netic current and its magnetic field, (5-74), we need the relationship between
electric current and its magnetic field:

H=iF:A=N(.]] (5-89)

which defines the operator N, and the relationship between magnetic current and
its electric field

E=—1£‘Fxﬂ'=—N[M) (5-90)

where N is the same operator as in (5-89). The minus-sign difference in (5-89) and
(5-90) reflects the minus-sign difference in the two curl equations of Maxwell.
The appropriate operator equation is now a matrix combination of (5-67) and
(5-79), with the appropriate interaction terms added. To be explicit,

f o)) el e

where L, is the L of (5-62) and L, is the L of (5-74). The above is an equation
for the matrix of vectors J and —M. The minus signs are placed so that the
matrix operators, identified below, will be self-adjoint.

Equation (5-91) is just a more complicated form of a standard operator
equation. This is evident if we define

e[ 4] ol

N
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1
# = [ﬁ' _f_] =] i: (5-93)
| ° o
and rewrite (5-90) as
L)+ H(f)=g (3-94)

Again % and .# could be combined into a single operator, but we do not choose
to do so0. An appropriate inner product for the problem is

frg>=[[[fade=[[[@-E-H-M)dr (5-95)

which is the general definition of reaction [1].
A solution by the method of moments is obtained as follows. Define
*“electric™ expansion and testing functions as

#i=[g] =[] 99

and *“*magnetic” expansion and testing functions as

PR NN R
The expansion for f is then of the form
R E(f.f: + Vo /) (5-98)

Following the method of moments, we obtain the matrix equation

(Za] [Bud|[(1.]] |, [[2.0000]  [OWA
[[‘:—] [f-l][[F’-]]+[[?.,J[F.]] [[I,‘_]] (3:99)

Here the various matrices have the same definitions as in Sections 5-5 and 5-6,
except that the superscript i has been added to the source terms (right side) to
distinguish them from the response terms. The additional matrices [B,.] and
[C,.] describe the interaction between electric and magnetic currents.

The network analogy of (5-99) is shown in Fig. 5-12. The network denoted
IL,.] depends on geometry and wavelength, but not on & or u. The network
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[2...] is in series with the voltage sources, and depends on £. The network [¥,.]
is in shunt with the current sources, and depends on p. The voltage sources are
determined by the impressed electric field according to the second of equations
(5-7), and the current sources are determined by the impressed magnetic field
by the second of (5-83).

W l
B
g |
*
2]
dependent Ky [
o # e
+Os
I g (L e ]
s independent
1- af € and

[Fra]

dependent +
on g (’j]L) 1' i P'I{
L]
L 3

Figure 5-12. Network analogue for & body with both diclectric and magnetic materials.

When the method of subsections is used, we can interpret it as dividing the
object into a number of pieces, and calculating the interactions according to the
method of moments. This is basically the solution for wire objects given in
Chapter 4. For conducting bodies, the interactions are a self<impedance for each
subsection of current, and mutual impedances with every other element of
current. In the case of dielectric (or magnetic) bodies, the interpretation is
similar, except that the impedance (or admittance in the magnetic case) can be
divided into two parts, one independent of & (or g) and the other dependent on
g (or p). In the method of subsections, the careted networks (left side) of
Figs. 5-10, 5-11, and 5-12 involve noninteracting elements, that is, become
diagonal matrices. For example, the network representation of Fig. 5-12 becomes
that of Fig. 5-13 when subsectional bases and testing are used. The effect of
£ and u 1s then expressible as simple lumped elements, basically a capacitance
and inductance, respectively. Similar simplifications of Figs. 5-10 and 5-11 also
result for the purely dielectric and purely magnetic problems.

Although we have in principle a solution to any problem, it is difficult to
use it for large bodies because of the large orders of matrices involved. For
example, if a cube 1 meter on a side were to be divided into subcubes 0.1 meter
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Figure 5-13. Network analogne for a material body when a subsectional hasis is used.

on a side, there would be 1000 interacting elements. If each element had three
electric current bases J,, J,, and J,, and three magnetic current bases M,, M,
and M,, the matrix operators would be of order 3000 by 3000. Storage and
inversion would be impossible on even the largest computers. This emphasizes
the need of ingenuity in the formulation of a problem to keep it manageable, and
of experience to be able to use simplifying approximations.
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6

Multipeort Systems

6-1. Neiwork Represeniation

Many electromagnetic engineering problems involve excitation, measurement,
tuning, etc., only at ports, that is, at terminal pairs close together compared to
wavelength. This concept can be generalized to include ports which are in-
dividual modes of a waveguide[1,2]. In this chapter we consider ports as terminal
pairs, although waveguide modal ports are included by implication.

Figure 6-1 represents material bodies for which a system of N ports is defined.
To avoid confusion with the generalized network parameters of Chapter 5, we
shall use lower-case letters to denote port parameters. Hence, let [v] denote the
matrix of port voltages and [i] the matrix of port currents. The usual impedance
matrix [z] of network theory relates [¢] to [i] according to

[v] = [z][i] (6-1)
It has elements given by

(6-2)

ports JDOHI-I‘IIIId

where i, is & current source applied to port b and y, is the voltage across the open
circuit at port a.Alternatively, we can relate [¢] to [{] by an admittance matrix
[¥] according to

[i]1 = [¥1lv] (6-3)
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The elements of [y] are given by

i
Yab == (6-4)
Us | ports shartcircuited

where v, is a voltage source applied to port b and ig is the current in the short
circuit at port a. If the inverses exist, it is evident from (6-1) and (6-3) that
[#]1 =[z""] and [z] = [y~ '} Other matrix relationships, such as scattering
matrices [3], may be used to relate port voltages and currents if desired.

(n (3 (N

Figure 6-1. Multiport system.

The elements of [z] are related to the electromagnetic fields E and H and cur- °
rents J and M, as follows. Let E? and H® be the fields when a current source i,
is applied to port a, all ports open-circuited. Let J® and M® be the currents re-
sulting from a current source i, applied to port b, all ports open-circuited. The
impedance matrix element z,, is then given by [4]

z,,,='—lj'j' (E°- J* — H* - M") dt (6-5)

il [b

where the integration extends over all space. For nonmagnetic matter (u = pg)
there is no magnetization current M, and (6-5) reduces to

zd=E:T:"m‘E'*J*dt (6-6)

In the case of perfect conductors, the volume integral of (6-6) should be replaced
by a surface integral over all conductors.
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MNow consider a solution in terms of the generalized network parameters of
Chapter 5. For perfect conductors, the solution is represented by (5-13). Substi-
tuting this in (6-6), we have

w1

LM iﬁ

[PI0YIve] (6-7)

E.b -_—

where [Y] is the generalized admittance matrix, inverse to (5-8), and [V*] and
[F*] are generalized voltage matrices with elements

Ve =<{J. EP) (6-8)
F: ={W,, Eb} {ﬁ'g}

Here E° is the field resulting from i, at port @ and E” is the field resulting from i,
at port b. If the medium is dielectric, the matrix [¥] is given by (5-73) and the
generalized voltages by (6-8) and (6-9). If the media is magnetic, but not di-
electric (¢ = &), the concepts of Section 5-6 apply. In this case, J* = 0 in (6-5),
and instead of (6-7) we obtain

1
[n iﬁ

[I1Z101"] (6-10)

Zah =

Here [/°] and [I*] are generalized current matrices of the form (5-83), that is,
dual to (6-8) and (6-9), and [Z] is the impedance matrix appearing in (5-87). For
the general case of matter both magnetic and dielectric, we can use a combina-
tion of (6-7) and (6-10), with interaction terms added, according to the concepts
of Section 5-7.

The elements of [¥] can be related to the field quantities by equations dual to
(6-5) to (6-10). For example, instead of (6-5), we have in general

Yab =

_ul mu-l'  MP — B+ J%) dr (6-11)
]

v

Here H®, E” is the field due to voltage source v, applied to port a, all ports short-
circuited, and M*, J° is the current due to v, applied to port b, all ports short-
circuited. Note that the field quantities of (6-5) are not the same as those of
(6-11), since in the former case all ports are open-circuited, and in the latter case
they are short-circuited. In the case of nonmagnetic media, M* = 0 and (6-11)
reduces to

Yar = v_]_v., [[[Ee" 3 e (6-12)
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If we use generalized network parameters, (6-12) becomes

1
Ualy

[P0YIrv'] (6-13)

Yab =

which is dual to (6-10). In any particular problem, the choice between (6-7) and
(6-13) is one of convenience. If the system is easier to analyze with all ports
open-circuited, (6-7) is used, whereas if the system is easier to analyze with all
ports short-circuited, (6-13) is used. Keep in mind that the [¥]'s of (6-7) and
(6-13) are not the same, because the former is for open-circuited ports and the
latter for short-circuited ports.

8-2. Loaded Antennas

A loaded antenna is a structure having two or more ports, fed at one port and
loaded by admittance elements at the other ports. In this section we consider
only singly loaded antennas; the multiply loaded case will be discussed in Section
6-4. Two examples of singly loaded antennas are the loaded dipole and loop of
Fig. 6-2. These two-port structures have an admittance representation

[H] = [.!-'n Pu][*ﬁ] (6-14)
iz Y1 Y ll¥:
We choose port 1 to be the input and port 2 the loaded port. The load admittance

¥, imposes the constraint
iy==Y,0, (6-15)

(a}) (b}

Figure 6-2. Wire antennas with lumped loads. (o) Loaded dipole, (b) loaded loop.
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on port 2, where the minus sign arises from reference conditions. A direct solu-
tion of (6-14) and (6-15) for the input admittance Y, = i,/v, yields

YizVa
Yaa+ YL

Y= Yu = (ﬁ'lﬁ]

If all media are reciprocal, y,; = ¥,,. Alternatively, the impedance matrix [z]
could be used, obtaining

Zon Z
Z,=24 - f;;—i (6-17)
L

which is dual to (6-16). Note that Z;, = 1/Y, and Z,, = 1/¥,,, but the z;; are
not the reciprocal of the y;;. The various matrix elements of [y] or [z] can be
calculated by the method of moments, as discussed in Section 6-1.

The simplest procedure for determining the current distribution on the
antenna is to obtain v, from two-port network theory, and superimpose the
currents due to v, and v;. A direct solution of (6-14) and (6-15) yields

=¥
Uy = —— 6-18
=T (6-18)
as the voltage at port 2. For conducting bodies, the current on a single port
antenna is given by (5-13). For the two-port case, by superposition, (5-13)
becomes

J =[JIY.I0VE" + Vi (6-19)

where [F"] is the excitation matrix due to v, and [V{*"] is the excitation matrix
due to v;. The corresponding expression for v; in terms of [z] is most simply
obtained by substituting for the y,; in (6-18) giving

_ 212

where det|z| denotes the determinant of [z]. Note that, because the excitation
is a voltage excitation, it is more convenient to use (6-18) and [y] than to use
(6-20) and [z].

Finally, the radiation pattern is also obtained by superposition. For a one-
port antenna, the radiation field is given by (5-44). For a two-port antenna, it is
given by

wpe ™%

E, = PRSIV + v (6-21)

Jjdmr
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where [F1'"] is the excitation matrix due to v, and [V}?] is that due to v,, given
by (6-18) or (6-20). Remember that the E, of (6-21) is the component of E in the

direction of the receiving dipole Il,, hence is an arbitrary component of the
radiation field.

Example A. Consider the loaded dipole of Fig. 6-2(a), of length /, loaded at the
center by ¥,, and fed //4 from one end. For a particular example, let

_ cot(kl[4)
Y, = T (6-22)

which represents a short-circuited transmission line of length //4 and charac-
teristic impedance Z, = 100 ohms. The length/diameter ratio of the wire is
taken as //2a = 74.2, so the [¥] matrix is the same as that used in the example
of Section 4-4.

Figure 6-3 shows the input admittance for this case as a function of /4,
computed according to (6-16). Here y,, and y,, are the input admittances for
the wire when fed as an antenna at, respectively, the feed point and the position
of ¥,. The y,; = y;, ‘are the transfer admittances from the feed point to the
load point. For the analysis of Chapter 4 these are just single elements of [¥], as
discussed in Section 4-4. Figure 6-4 shows the current distribution on the wire
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Figure 6-3. Input admittance to a lincar antenna, loaded by a short-circuited transmission-
line stub, [j2a = 74.2.
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for the special cases | = i/2, 4, 34/2, and 21, computed according to (4-21) with
[F] as in (6-19). Figure 6-5 shows the gain patterns for the antenna associated
with the currents of Fig. 6-4. These are obtained from (4-39) with [V"] given by
the right-hand matrix of (6-19).

(e} [ = 3h/2

Figure 6-5. Fower-guin patterns for the loaded linear antenna of Fig. 6-3.

Example B. The solution for a loaded loop antenna is obtained in a similar
manner. A generalized admittance matrix [¥] for the loop is the inverse of [Z]
with elements given by (5-28) and (5-29). The two-port elements y;; of (6-14) are
then given by (6-13), where [F*] is calculated from (5-23) with

Ey =2 8¢ — ¢ (6-23)

This represents a voltage source v, at ¢ = ¢,. The resultant elements of [F*] are
Vo =np,ei™ (6-24)

Similarly, the elements of [F*] are obtained from (5-23) with ¢/ replaced by
e~ since w, = f. Hence the elements of [V*] are

Ve =y, e inbe (6-25)

To conform to the notation of this section, leta= 1 and b = 2. Because of the
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diagonal nature of [Y], equation (6-13) reduces to (5-48) for y,, and y,,, and to

o E.I"[«h =)

Y12 = Y21 “___m zZ

(6-26)

where Z,, are given by (5-29).
The current on the loop is given by (6-19), which reduces to (5-30) with

Vo =[VD + V]

- e.l"il _ Y12 e-"'") 6-2
u.( Yz + Y (527)

The radiation-field pattern is given by the equation analogous to (5-51), which is

wue™ ™ _ VIV,
;4nr E.: Z (6-28)

Eim

where ¥}, is given by (5-49) or (5-50) and ¥V, by (6-27). Some computations for
the loaded loop antenna can be found in the literature [5). The analysis used in
this reference is equivalent to the above analysis but organized differently.

8-3. Loaded Scatlerers

A loaded scatterer is one for which one or more ports are terminated by admit-
tance elements [6]). Again we consider only the singly loaded case; the multiply
loaded case will be discussed in Section 6-4. The analysis is basically the same as
for the loaded antenna, except that the excitation is external to the structure
rather than at a port.

Figure 6-6 represents a scatterer loaded at port s by Y, excited by a source
impressed at port f on a transmitting antenna, and the scattered field measured
at port r on a receiving antenna. This is a three-port system, for which the port
currents and voltages are related by

iy Yoo Yo Ves|| Ve
[il] - [J"'r.r Yo .l"'u] [Dr] (6-29)
iy Yer Ya YVullbs

When the scatterer is absent, we have a two-port system, for which

BRI -
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X

where the superscript 0 denotes an absent scatterer. Subtracting (6-30) from

(6-29), we have
Ai, Ayer A¥u Yes]|ve
ﬁ:ir = |Ayy AYe Yul|w (6-31)
I'-l -}rﬂ' -FJI }II v

Aiy=i;— i (6-32)

where

are the current changes at r and ¢ due to the introduction of the scatterer, and
Ay =Y — .'I"Er (6-33)

are the changes in admittance parameters due to the introduction of the scatterer.
At port s on the scatterer a load admittance ¥, introduces the constraint

Il _—— r‘. F’- {6*34}

where the minus sign results from reference conditions. For simplicity, take port
r on the receiver to be short-circuited ; that is,

v, =0 (6-35)
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Using (6-34) and (6-35) in (6-31), we then have

ﬁr.... Ayy Yrs 0
"!"]'?:r 'ﬂ'}rﬂ' Yis v, {ﬁ'%}
II .J'III+ }’L -l-’_., r

This can be readily solved for Ai,, giving

_— _ YrY¥n 2
Al = (ﬂy,, e 1’1_)”' (6-37)

Note that (6-37) gives only the change in short-circuit current at the receiver, in
contrast to the analysis of Section 6-2, which gives total current. The dual
analysis in terms of impedance parameters is given in the literature [6].

Example A. Consider plane-wave scattering by a straight wire with a lumped
load at its center. The details of the analysis are similar to those of Section 4-5,
augmented by the addition of port 5 on the scatterer. The excitation of the
scatterer is a plane wave incident from the transmitter, given by (4-40). The
measurement matrix 1s calculated from a plane wave incident from the receiver,
given by (4-32). Analogous to the development of (4-43), we obtain from (6-37)
for the loaded scatterer a scattering cross section

I".':ki 2

g=—4?[—ayﬂ—ri'f—;,; (6-38)
where
Ay, = [P][YI[V] (6-39)
Ve = [PTILYI(V?] (6-40)
« =[PIYI[V] (6-41)
w=[PIYILV] (6-42)

Here [Y] is the admittance matrix developed for wire objects in Chapter 4,
[V is the excitation matrix (4-41), [V"] is the measurement matrix (4-35), and
[V*] is the matrix (4-28) for excitation by a wmit source at the position of the
loading point. Because of the form of [V7], (6-40), (6-41), and (6-42) can be re-
duced to a simpler form. For example, y,, is the input admittance of the wire
when fed as an antenna at s, hence is just the appropriate diagonal element
of [Y].

Figure 6-7 shows the backscattering cross section for a center-loaded dipole
for various loads Z, for the case [[2a = 74.2. Shown for comparison are the
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same results for a two-term variational analysis [7]. The present matrix solution
gives somewhat better accuracy than the previous variational one because a
better expansion for the current is used. The larger discrepancy between the two
solutions for the case Z; = oo (open circuit) is due to difference in gap capaci-
tance, which is sensitive to the approximations used. The two curves can be
brought into close agreement by an adjustment of this gap capacitance.
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Figura 6-7. Backscattering croas section for a center-loaded dipole, [[2a = 74.2, with
various loads Zp .

Figure 6-8 shows the back-scattering cross section for a center-loaded dipole
resonated at various //A by reactive loads. By definition, a resonant load is one
which is a pure reactance equal to the negative of the input reactance at s when
fed as an antenna [9]. In Fig. 6-8, curve (a) is for a dipole continuously tuned to
resonance, and curves (b) and (c) are for a dipole resonated by an inductor at
/A = 0.25 and 0.35, respectively. Curves (e) and () are for a dipole resonated
by a capacitor at /A = 0.55 and 0.65, respectively. Curve (d) is for an open-
circuited dipole. The curve for a short-circuited dipole is given in Fig. 4-10, and
has a peak lying between (a) and (e) of Fig. 6-8.
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Example B. Plane-wave scattering by a loaded circular loop can be treated
using the generalized impedances of Chapter 5. The analysis is an extension of
that for the unloaded circular loop (Section 5-3). The resultant formula for
scattering cross section is again (6-38), with (6-39) to (6-42) applying with the

- (b)

0.1

0o~

L1 111}

002 -

0 ] 1
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(]

Figurs 6-8, Backscaltering eross section for a resonated dipole,[/1a = 74.2. (o) Continuoushy
resonated, (b) resonated by induetor at ||\ = 0.25, (¢) resonated by inductor at [|A = 0.35,

(d) open-cirenited dipole, (¢) resonated by eapacitor at [\ = 0.55, () resonsted by eapaci-
tor ot I[A = 0.65.

following changes. The elements of [V7] are given by (5-49) for the ¢-polarized
case, or by (5-50) for the O-polarized case. The elements of [V] are given by
(5-54) for the ¢-polarized case, or by (5-55) for the #-polarized case. The matrix
[V"] is given by (5-46) with V, = 1 if the load terminals s are at ¢ = 0. More
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generally, when the terminals s are at an arbitrary angle ¢,, the elements of
(V7] are

V3 = ginde (6-43)

The matrix [¥] in (6-41) and (6-42) must be replaced by the conjugate transpose
(Hermitian) matrix, because f, and w, (expansion and testing functions) are con-
jugates of each other. The admittance matrix [¥] is diagonal, with elements

reciprocal to (5-29). Because of the diagonal nature of [Y], equations (6-39) to
(6-42) can be reduced to

VaVa

L (6-44)
) F';:*' (6-45)
yu=% F;: (6-46)
Vs = 5_‘ i (6-47)

Note that (6-47) is just the input admittance to the loop antenna, given by (5-48).
Figure 6-9 shows the backscattering cross section for loaded circular loops
resonated at various b/4 by reactive loads [8]. Curve (a) is for the complete (un-
loaded) loop. The dashed curve (b) is for a load continuously tuned to resonance;
that is, ¥, = —Y,. Curves (c) and (d) are for a loop resonated by a capacitor
at b/A = 0.03 and 0.06, respectively. Curves (e), (), and (g) are for a loop reson-
ated by an inductor at b/4 = 0.09, 0.12, and 0.15, respectively. The curve for an
open-circuited loop is not shown, but has a peak between curves (d) and (e).

G-4. Muliiple Feeds and Loads

The generalization of the analysis of Section 6-2 to structures with multiple feeds
and loads is straightforward if we replace most scalar quantities by matrix
quantities [10]. Let Fig. 6-10 represent an electromagnetic field problem for
which there are N ports excited by voltage sources vy,...,vy, and M ports
loaded by admittance elements ¥, ..., ¥, Let the N excited ports be denoted
set |, and the M loaded ports be denoted set 2. Then the matrix extension of
(6-14) is

i) = (v Eveal [ (649
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ﬂ.T = —

L1 1 i1

1

04 =
[ {ch (d)
e d
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r U Trrnd

I I I

QL0

I

0,02 =

0.01 1

Figure 6-9. Backscattering cross section for a resonated loop, bja = 100, (a) Complete loop,
(b) continuously resonated, (c) resomated by capacitor st b/A = 0.03, (d) resonated by
capacitor at b{A = 0.06, () resonated by inductor at b/A = 0.09, (f) resonated by inductor
at bjA = 0.12, (g) resonsted by inductor at b/A = 0.15.

i —
M
e, -

L] L] L L
L] L] - L]
- L # L

Figure 6-10. Multiport system with N ports excited and M ports loaded.
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where the elements of [I,] are i, ..., iy, and similarly for [V,], the elements of
[I;) are iy sy, ..., iysn and similarly for [V;]. The admittance matrix relating
[1] to [V] is partitioned into the submatrices [¥,] as shown in (6-48).

Thn_lnndadmitml’"...,f"mbeupremed in terms of a load
matrix

Y, 0 - 0
& T i Rl (6-49)
0 0 - Yy

and the constraint represented by loading the ports of set 2 becomes
[I:] = —[Y.I[V2] (6-50)

analogous to (6-15). We can solve for the matrix of input admittances [¥,,] seen
at the ports of set 1, obtaining

(Y =[Y1,] = [Y12][Ya2 + Y17 '[Yay] (6-51)

analogous to (6-16). This result can be generalized to loads with coupling by
replacing the diagonal matrix (6-49) by an arbitrary M by M network matrix.

The dual treatment in terms of impedance matrices leads to a matrix of input
impedances

[Zi,] =[Z:,] = [Z:2][Z32 + 2,17 [Z34]) (6-52)

dual to (6-51) and analogous to (6-17). Other matrix representations, such as a
scattering matrix, might be used to represent the system. The most convenient
matrix to use depends on the particular problem.

Each element of the matrices [Y;;] or [Z;] may be calculated by the methods
of Section 6-1. For example, an element y,, is defined by (6-4), and can be calcu-
lated by the method of moments according to (6-7). If the current distribution on
a conducting body is desired, it is the superposition of the currents due to the
voltage at each port, that is, an N + M term expansion of the form (6-19).
Similarly, the radiation field is the superposition of that due to the voltage at
each port, which is an N 4+ M term superposition of the form (6-21).

Example A. A multiply fed andfor multiply loaded linear antenna can be
treated by a simple extension of the analysis of Section 6-2, Example A. The
admittance elements of (6-48) are identical to those of [¥] of Chapter 4, because
of the subsectional method of solution. Hence each element y;; of (6-48) is the
appropriate element of [¥] inverse to [Z] having elements (4-20). A continuously
loaded linear antenna can be treated as one loaded in each interval along its
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length. The effect of the finite conductivity of a metal can be determined by con-
sidering the antenna to be continuously loaded by an appropriate impedance,

Example B. A multiply fed andfor multiply loaded loop antenna requires the
calculation of additional mutual admittance elements. The input admittance to
the loop is independent of where it is fed ; hence all y,, elements of the admittance
matrix are equal, and given by (5-48). For the mutual admittances, let various
ports about the loop be defined by the angles ¢;. The elements y,;, i # j, are then
all given by (6-26) with angles arbitrary; that is,

All elements of the admittance matrix of (6-48) can thus be calculated, and the
analysis proceeds as outlined in the text.

8-5. Muliiply Loaded Scatierers

The analysis of Section 6-3 can also be extended to multiply loaded scatterers by
replacing scalars by matrices. Suppose the scatterer of Fig. 6-6 has N ports
loaded by lumped admittances Y,,..., ¥y. The excitation is applied, to port ¢
on a transmitting antenna, and the measurement is made at port r on a receiving
antenna. We now have an N + 2 port system, for which the generalization of

(6-29) is
[[i.-] L.v.. ¥ [I',J] [[ﬂ.]
i | =] Y Yo LYl Uy (6-54)
Il Y] [Y.] [Y.allivd

Here [Y,] is the admittance matrix for the ports on the scatterer. (If the trans-
mitter and receiver are distant from the scatterer, [ ¥, ] is the admittance matrix
for the system when viewed as an antenna.) The row and column matrices which
express the receiver-scatterer and transmitter-scatterer admittances are

[rrlJ - I-J"rl. Yez °°° .Pr.h‘] [5-55}

[Yol =[x Y2 == ¥l (6-56)
[ Vir [ Vas |
Yz, ¥z

[Yel=] : (Y= : \ (6-57)
LY nr |57

If all media are reciprocal, we have [Y,,] = [¥.] and [Y,] = [T,].
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When the scatterer is absent, equation (6-30) applies. The subtraction of
(6-30) from (6-34) gives

Ai, AV Ayn L[Ya.] Uy
[ﬁ!:] e [ﬁyﬁr "'!‘J"rn: [Yu]:l[ U ] (6'53}
[] [Y.] (Y.l [Y,1iLIV]

analogous to (6-31). The effect of the loading of the ports on the scatterer is
expressed by the matrix equivalent of (6-34). This is

() = =Y. V] (6-59)

where [¥,] is given by (6-49) if the loads are distinct elements, and by an arbi-
trary admittance matrix if the loads are coupled. Finally, solving for the change
in receiver current due to the introduction of the scatterer, we have

Ai, = (Ayy = [Y, ][ Y + Y17 [ Y Div, (6-60)

which is analogous to (6-37). The various impedance elements can be found by
the methods of Section 6-1.

Specialization of these results to scattering by multiloaded dipoles and loops
involves the same procedures as used in the examples of Sections 6-2 to 6-4. Of
particular interest is plane-wave scattering, in which case echo area is given by

qiki
¢ =" Ay, — [V ][Y,s + ) Ak A [y (6-61)

analogous to (6-38). The various matrix elements are all computed by formulas
similar to (6-39) to (6-42). These must be modified slightly for the case w, # f,,
as discussed in Example B of Section 6-3.

In all our examples of plane-wave scattering we have computed the radar
cross section of the scatterer, which depends on the polarization properties of
both the transmitter and the receiver. A general treatment of the scattering prob-
lem involves the use of a scattering matrix relating two orthogonal components
of electric field at the receiver to two orthogonal components of incident field
from the scatterer. This procedure requires two ports at the transmitter and two
ports at the receiver; hence the elements y,,, ¥, ¥, and y,, of (6-54) must each be
replaced by 2 by 2 matrices. The scattering properties of the loaded object can
then be completely described by four elements of a scattering matrix. The details
can be found in the literature [6].
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Elgenimllm Problems

7:1. Intreduction

An eigenvalue equation is a homogeneous equation for which solutions (eigen-
functions) exist only for particular values (eigenvalues) of a parameter. The
general linear eigenvalue equation is

L(f) = AM(f) (7-1)

where L and M are linear operators, the permissible 1's are eigenvalues, and the
corresponding solutions f are eigenfunctions. The eigenvalue equation is im-
portant for two reasens: (1) The use of eigenfunctions as a basis in the method
of moments leads to a diagonal matrix representation of the operator [1,2], and
(2) characteristic parameters of physical problems often correspond to eigen-
values of an eigenvalue equation. Qur use of eigenvalue equations will be pri-
marily for the second purpose.

Again our general method of solution will be to reduce a functional eigen-
value equation to a matrix eigenvalue equation, which can then be solved by
known computational algorithms. We consider the eigenvalue equation solved
once it is reduced to a well-behaved matrix eigenvalue equation. The computer
solution of eigenvalue equations is not as simple as that of deterministic equa-
tions. An iterative procedure is usually used, and Appendix C gives a widely
used Jacobi method.

In complicated problems a straightforward application of the method of
moments becomes difficult, and the various special techniques of Chapter 1
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become useful. These techniques are not discussed again in this chapter, but will
be used in some of the examples. On the other hand, the procedure of reducing
a second-order differential equation to a set of first-order equations, which is
equally applicable to the deterministic problems of Chapter 1, is discussed in
detail here.

v-2. Meihod of MHomenis

Application of the method of moments to eigenvalue equations closely parallels
its application to deterministic equations (Section 1-3). Given an eigenvalue
equation (7-1), we choose a set of basis functions f}, /3, /5. . . . , in the domain of
L and M, and let

J"-};,ﬂf.f. (7-2)
where the «, are constants. Substituting (7-2) in (7-1), and using the linearity of
L and M, we have

Yo, L(f)=2F a,M(f) (7-3)

It is assumed that a suitable inner product { f, g> has been defined according to
(1-2) to (1-4). We then choose a set of testing functions w,, w;, w;, . . ., in the
range of L and M, and take the inner product of (7-3) with each w,,. This results
in

L au(wus Lfu> =1 T aWu, ML (7-4)

m=1,213,..., which can be written as the matrix eigenvalue equation

[d(2] = A[m ][] (7-3)

Here

Cwe, Mfy>  (wy, Mfy) - -
e (7-6)

-------

[1.] is the corresponding matrix of the {w,, Lf,», given by (1-25), and [«,] is the
column matrix of the «,, given by (1-26).
Equation (7-5) can have solutions only if

det|l,, — Am,| =0 (7-7)

where det|a,| denotes the determinant of the matrix [a,.] The determinant
(7-7) is a polynomial in 4, with roots i,, 43, 4, . . . . These 1, are eigenvalues of
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the matrix equation (7-5) and they approximate the eigenvalues of the func-
tional equation (7-1). The corresponding matrices [a,],, [0z, [%a]as - . . are
eigenvectors of (7-5), and are coefficients of functions

- [J?:r] NP (7-8)

which approximate the eigenfunctions of (7-1). In (7-8), the [ f,] is a matrix of the
basis functions and ~ denotes transpose. Just as in the deterministic case, the
success of the method of moments depends on our ingenuity in choosing appro-
priate f, and w,. The particular choice w, = f, is Galerkin's method.

Often the canonical form of the eigenvalue equation is given as L(f) = if
instead of (7-1), that is, M = identity operator. In many cases of practical
interest M is a positive definite operator. The quantity {f, Mg} then satisfies
postulates (1-2) to (1-4) for an inner product, and can be used as a new weighted
inner product. In this case the inverse operator M ' exists, and (7-1) can be
written

M™IL(f) = Af (7-9)

Hence an analysis of (7-9) with the weighted inner product {f, Mg} is identical
to an analysis of (7-1) with the unweighted inner product {f, g>. Finally, the
algorithm of Appendix C for solving matrix eigenvalue equations is for the case
[ladl2,] = Al=,), and hence (7-5) must be multiplied by [m~'] before applying
this algorithm.

EIIM,HE To illustrate these concepts, let us consider the same operator
L = —d?|dx* used for the examples of Chapter 1. In particular, mns:der the
eigenvalue problem

- i =Af (7-10)
dx*
fO)=f(1)=0 (7-11)
As is well known, the eigenvalues for this problem are
A; = (in)? i=1,23,... (7-12) -
and the eigenfunctions are
fi = /2 sin(inx) (7-13)

These have been normalized with respect to the inner product

9> = [ f(x)g(x) dx (7-14)

We wish to reconsider the problem by the method of moments.
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For a power-series solution, choose expansion functions
fu=x—xm1 (7-15)

which satisfy the boundary conditions (7-11), that is, are in the domain of L.
For testing functions choose

W, =f, =x—x""1 (7-16)

s0 that the method of moments reduces to that of Galerkin. An evaluation of the
matrix elements /_, = {w,, Lf,» for the inner product (7-14) in this case gives

mn

e 7=17
m+n+1 ( )

Ly =

The operator M is the identity operator and the matrix elements m,,, = {w,, />
are found as

mn(m + n + 6)

Mmn = 3(m + 3)n + 3)(m +n + 3) \Z=18)

Note that even though M is the identity operator [m,,] is not the identity matrix.
To illustrate convergence, let us consider approximate solutions as the num-
ber of basis functions W is increased. For N= 1, I;;, = 1/3, m,, = 1/30, and
(7-5) reduces to
l 1

Hence our first approximation to 4, is 24" = 10, compared to the true value =2.
Here the superscript (1) denotes the N = 1 approximation. To compare the
approximate eigenfunction f{' = a,(x — x*) to (7-13), we normalized f|"
according to

=0, 11 =a}(sY) (7-20)
whence «, = /30 and
9 = /30(x — x?) (7-21)

A comparison with the exact f, = ﬁ sin mx is shown in Fig. 7-1(a).
For N = 2, that is, for a two-term expansion (7-2), equation (7-5) becomes

B IR0 ) I
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(a)

Figure 7:1. (o) First eigenfunetion, spproximate and exact. (b) Second sigenfunction,
approximate and exact.
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The eigenvalues are found from the determinant (7-7), which is

(10 — ANB4 — 84) _[lﬂ-}.}’ e

(G0X105) 200 0 (7-23)
This is a quadratic equation in A, which has solutions
A® =10
(7-24)
AP =42

If A{*! is substituted for A in (7-22), a, can be determined in terms of «,, and a,
determined from the normalization

1= (i 1) = [E)[mm]lx] (7-25)
The second eigenvector f{*’ can be similarly determined. The results are
fl‘“-mx-x’) = fi
(7-26)

1% = 3,/210(x = x?) = 2,/210(x - x*)

Figure 7-1(a) shows f{*) = f{!’ compared to the exact solution, and Fig. 7-1(b)
shows f/§*’ compared to the exact solution.

For higher N, solutions are best carried out on a computer using the pro-
cedure of Appendix C. Table 7-1 lists the ecigenvalues as N is increased. Note
that the eigenvalues i{" .are always larger than the exact eigenvalues JA,. This
must be so if the operator is self-adjoint and positive definite, as is the present
operator.

TABLE 7-1. Appreximate Eigenvaloes for an N-term Galerkin
Solution with f, = (x — x7+1), Bscond-order Operator

N A A0 b oam | g

1 10,0000

2 10.0000 42.000

3 9.8697 | 42.000 | 102.133

4 9.8697 39.497 102.133 | 200.583
Exact 9.8696 39.478 88.826 | 157.914
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7-3. Nonuniform Transmission Lines

We wish to discuss a number of methods for treating eigenvalue problems
representable by second-order differential equations. So that the reader can more
easily appreciate the physical significance of the mathematical manipulations,
the equations will here be related to those for a nonuniform transmission line.
The equations for this problem are quite general in form.

ifx)

il

vix)

A0

d

121

Figura 7-1. Section of a transmission line.

Figure 7-2 represents a section of loss-free transmission line, in general non-
uniform. Let x denote position along the line, /(x) the series inductance per unit
length, and ¢(x) the shunt capacitance per unit length. We restrict consideration
to the time-harmonic case, in which case

v{x, t) = Re[V(x)e"] (7-27)
i(x, 1) = Re[/(x)e’™] (7-28)

where v(x, 1) and i(x, t) are the line voltage and current, ¥F(x) and I(x) are the
complex phasors, and Re denotes real part of. Then, by an application of
Kirchhoff’s voltage and current laws to a differential length of line, we can derive
the time-harmonic transmission-line equations [3]

dv

o = —jel(l (7-29)
::—i = —jwc(x)V (7-30)

To completely specify the eigenvalue problem, boundary conditions at the ends
of the line can be specified. For our examples, let the line be open-circuited at
the ends x = 0 and x = d, in which case the boundary condition is

1{0)=HKd)=0 (7-31)
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Our problem now is to determine the natural resonances w, of the line.

Equations (7-29) and (7-30) can be written in standard operator form by
defining the following matrices:

[ Vix)

£=| 1o (7-32)
P
dx
L=1, (7-33)
&
_[etx) 0
M=o -ix (7-34)
Then, assuming the usual rules for matrix multiplication, the equation
Lf = joMf (7-35)

is equivalent to (7-29) and (7-30). Here jw corresponds to the eigenvalue 4. To
complete the formulation, boundary conditions such as (7-31) must be specified.

If e(x) is differentiable, the transmission-line equations can be combined into
a second-order differential equation as follows. Take the derivative of (7-30)
and obtain

d?I de dV

Substituting for ¥ from (7-30) and for dV/dx from (7-29), we have

d*l 1 dec dl
e Sy w?lel (7-37)

By an analogous procedure, if /(x) is differentiable the second-order equation for
V is found to be

=~

e = wlcV (7-38)

2y
x.‘l

—-|._.|..

2=
=

Equations (7-37) and (7-38) are called relegrapher’s equations.
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To express (7-37) in standard form, define operators

ol by = (%
M = I(x)e(x) (7-40)

and write
LI = o*MI (7-41)

This again is an eigenvalue equation with eigenvalues w? and eigenfunctions I.
Agnin boundary conditions must be specified to restrict the domain of L, and
we continue to take (7-31) for our examples. Equation (7-38) can similarly be
written in standard form by defining suitable operators L and M.

7-4. Second-erder IMilerential Operater

If the second-order differential representation (7-39) to (7-41) is considered, and
the unweighted inner product

AT I: 1(5(x) dx (7-42)

defined, we can show that the operator L is not self-adjoint unless ¢ is a constant.
This causes very little trouble, because the adjoint operator can readily be deter-
mined as

i dil df 1dec
Ll = e dx(l = (7-43)
However, the theory is complicated somewhat by the necessity of considering
an adjoint eigenvalue equation. For second-order operators, it is always possible
to define a weighted inner product for which L is formally self-adjoint, circum-

The general second-order differential eigenvalue problem, known as the
Sturm-Liouville problem, has been studied extensively [2]. Any second-order
eigenvalue problem can be written in the form

wk Fj—x —gf = Arf (7-44)

wdx
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It is then easy to show that the operator represented by the left side of (7-44) is
self-adjoint with respect to the weighted inner product

Sy = f: WO () f3(3) dix (1-45)

The particular operator (7-39) can be written in the form of the left side of (7-44)
as

LI = —gnc r-fﬂ] (7-46)
dx dx

A comparison of (7-46) with (7-44) shows that w = ¢~ '*° and therefore the
weighted inner product

(o Iy = [ € 0L 1(x) d (7-41)
o
makes the operator (7-39) self-adjoint.
Example. For comparison with other solutions, let us consider the second-

order equation using a Galerkin solution with pulse functions for expansion and
testing. For simplicity, let / and ¢ be constants, in which case (7-37) reduces to

d?l
—x= Al (7-48)
where
A =wle (7-49)

Also, let d = 1, in which case the boundary conditions (7-31) reduce to
0)=Kl1)=0 (7-50)
and the inner product (7-42) becomes

Uy I3y = J‘;f (XM 5(x) dx (7-51)

Note that the problem is now precisely the same as the example of Section 7-2.
For a Galerkin solution using triangle functions, let

Jfo=w,=Tx-x,) (7-52)

where T(x) is the triangle function discussed in Section 1-5 and defined by (1-50).
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Following the method of moments, the matrix equation (7-5) results, with

2(N + 1) m=n
L =1 —(N + 1) Im—=n|=1 (7-53)

0 Im=n|=>1

as shown in Section 1-5, and

| 2
w+np o0
My = 1 _ (7-54)
aw+n moM=l
0 Im—n|=>1

Now the matrix eigenvalue problem is

[l = Almp,][2,] (7-35)

which can be solved by hand for small orders N, or by computer for the larger
orders. Table 7-2 shows the approximate eigenvalues for an N-term expansion
of triangle functions. A comparison of these results with Table 7-1 shows that
the power-series solution of Table 7-1 converges slightly faster than the piecewise
linear solution of Table 7-2. This is to be expected, because the power functions

are better behaved than the triangle functions.

TABLE 7-2. Approximate Eigenvalues for an [V-term Galerkin
Bolution with fy = Tz — z,); Sccond-order (hperator

N hﬁ.’l} A':Fl .A.f]"} Mﬂl

1 12.000

2 10,800 54.000

3 10.386 48.000 128.868

4 10.198 44.903 116.118 | 227.838
Exact 9.870 39.478 88.826 | 157914

v-5. Firsi-order Differeniial Operaior

A second-order differential equation can be expressed as a pair of first-order
differential equations. For example, the transmission-line problem of Section
7-3 can be either in terms of the second-order equations (7-37) or the first-order
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equations (7-29) and (7-30). We wish to show that, for similar approximations,
solutions to the first-order equations converge faster than those to the second-

order equations.
The transmission-line problem is sufficiently general for our purposes. The
first-order formulation is given by (7-32) to (7-35), or

P | R A

For illustrative purposes, the line length is normalized so that 4 = 1, and the
boundary conditions are

1(0) = I(1) =0 (7-57)
A suitable inner product for the problem is
1
uofa> = [ Jifadx
i
i
= [ [G)Va(x) + L(3(0)] dx (7-58)

where [ is the matrix (7-32). This inner product satisfies postulates (1-2) to (1-4),
as required.

The matrix operators in (7-56) are self-adjoint with respect to (7-58), as we
shall now show. For M, defined by (7-34), note that M = M, and

i 1
oo M2 = [ TuMfy dx = | ] B1f, dx

_— {fll Mfi > [T-ﬁ'g:l

For L defined by (7-33), let L? denote its adjoint operator and f* functions in the
domain of L®. Then

-
i dx
ey =[x
| dx |
Lo dl L dV
-[. (—P =+ E)dx (7-60)

An integration by parts gives

dv*® dl

e LY = L (f ey E}:) dx + [— VI + V], (1-61)
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From the form of (7-61), it is evident that if

-y
T dx
I=L= (7-62)
2 b
then
LY = Lf* + 1V - VI, (7-63)

The last terms vanish if J° satisfies the same boundary conditions (7-57) as I.
Hence L is self-adjoint, since L* = L and the domain of L* is that of L.

Example A. The crudest moment solution of (7-56) is to take the pulse functions
(1-49) for both expansion and testing. This solution is identical to that obtained
by analyzing the lumped-clement equivalent network of the transmission line.
Let us first discuss this equivalent network, and later show that it is the same as
-a Galerkin solution using pulse functions.

Figure 7-3(a) represents the physical transmission line and Fig. 7-3(b) the
approximate equivalent network, derived as follows. Let the physical line be
divided into N intervals Ax = x, — x,_, and N + 1 shifted intervals Ax’ =
Xy = Xp- . Define equivalent lumped inductors as

Lo=[" 1) dx (7-64)
el !
| | | | | 1 | | | I | | i
1 | | | | | | | | I | | i 1
| | | | I I | | | I | | | I
| | | I 1 1 i | | I | i | 1
T W G o P i |
o x xy ot | | Ty y Ta—y s E End | £y Xg= d
(a)
Iy L I
—_ —_— —
Fa L4 L L4
Y B N
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and equivalent lumped capacitors as

- f " e(x) dx (7-65)

Xy

Note that the two end capacitors C, and Cy are integrated over half-intervals.
Let V, denote the line voltages at x,, and I, the line currents at x. Then, by the
laws of circuit theory applied to each element of Fig. 7-3(b), we have
Irl'l - Il i —ij-',l", {?'ﬁ&}
Vats — Vo= —joL,I, (7-67)
n=0,1,2,..., N. The currents at each end are obviously

Iy=Iy, =0 (7-68)

which correspond to the boundary conditions (7-57). Equations (7-66) and
(7-67) are a set of first-order difference equations, which can be placed into

matrix form as
ERE WA P

1 0 0 . (=1 1 0 0 &
-1 1 0 0 -1 1 0
A= 0 =1 1 Apy=| 0 0 -1 1
i -1 I =1 1]
(7-70)
-Cn 0 0 - -L] ﬂ ﬂ %
l:-'l 'ﬂ, ﬂ SHLEL 'ﬂ L: 0 e
c={o 0o ¢ - | L=l0o 0 L, ----| =)
8 0 Cy_ L 0 Ly
[V, 1,7
Vi I,
v=|-| 1=|-: (7-72)
L Vv Ty
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Note the similarity of (7-69) to the corresponding differential equation (7-56).
The A matrices of (7-70) are finite-difference approximations to the derivative,
called first differences.

We wish now to obtain (7-69) as a special case of the method of moments.
Let the x, of Fig. 7-3(a) divide the transmission line into N equal segments, and
let the x, be shifted one-half interval toward the origin, that is,

:H
I
=|=

(7-73)

=
|
hibe

i.H:-.
]

2z

With respect to the inner product (7-58), it is evident that (7-64) and (7-65) are
obtained if both w, and f, are constant in the interval Ax,, and zero elsewhere.
For this we define the pulse function

PA=o i 1o 74
and express w, and f, as a set of * voltage-type ™ functions
=w = [P{" N "'-J] (7-75)

n=0,1,2,..., N, plus a set of “*current-type " functions

- = [ P(xﬂu x;}] (1-76)

n=1,2,3,...,N. Inother words, we are approximating V' by pulses centered
on the x, and I by pulses centered on the x,. Now the matrix (7-6) can be
written in terms of submatrices as

(7-77)

(o] = [m M | C¥m Mf.’}]
e (“':u MYy (wh MDD

where M is given by (7-34). An evaluation of (7-77) gives

=[Gl ] e
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where the matrices C and L are given by (7-71). To evaluate the [/,] matrix, we
need the derivative of the P(x), which does not exist as an ordinary function. In
terms of symbolic functions, it is

‘;—.!: = E(x + %) - E(x - %) (7-79)

where §(x) is the Dirac delta function. Evaluation of the left-hand matrix of
(7-56) then gives

0 i ﬁ,] (7-80)

[L]) = [':'E',', ..... =

which is the left-hand matrix of (7-69). Hence, we have obtained (7-69), as
anticipated.

The matrix equation (7-69) can be reduced to a form more convenient for
computation. First, note that if @ = 0, a solution is

e s
1 0

ol=|:| wa=|: (7-81)
€8 0]

Hence w, = 0 is an eigenvalue, and the corresponding eigenfunction f; corre-
sponds to a charged line. The other eigenvalues of (7-69) come in pairs +w; and
—ay, shown as follows. We can rewrite (7-69) as the pair of equations

AT = —joCV (7-82)

AV = —jwLl (7-83)
These are finite-difference approximations to the transmission-line equations,
(7-29) and (7-30). From (7-71) it is evident that L™' and C ™' exist as diagonal
matrices. Premultiplying (7-82) by C~' and then by A, we have

Ay C VAT = —jw AV (7-84)

A substitution from (7-83) and premultiplication by L™ gives

—LACT AT =l (7-85)

which is an eigenvalue equation with eigenvalues w?®. Note that (7-85) is a differ-
ence-equation approximation to the telegrapher’s equation, (7-37). It can also be
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shown that (7-83) constitutes the Kirchhoff loop equations for the equivalent
circuit of Fig. 7-3(b). A difference equation in V, similar to (7-85) and corre-
sponding to (7-38), could also be written. It would have the eigenvalue w} = 0
as well as the @/ > 0, whereas (7-85) does not have the eigenvalue @3 = 0.

To illustrate the rate of convergence of the above approximate solution, con-
sider the uniform line (/ and ¢ are constants). The exact solution is known,
having eigenvalues

A = wlle = i*a? (7-86)
i=1,2,...,and eigenfunctions
o [jJﬂ_c cos mx] —
sin inx

The approximate eigenvalues, calculated from (7-85) for the lowest-order solu-
tions (N = 1, 2, 3, 4), are summarized in Table 7-3. Figure 7-4 shows the equiva-
lent circuit for each order, and the first eigenfunction (i = 1), compared to the
exact eigenfunction, shown dashed.

TABLE 7-3. Approximuate Eigenvalues for a Galerkin Solu-
tion of the First-order Equations, Using N Curremi Pulses

and N 4 1 Voltage Pulses

N Al;ll A&H'I- A'iﬂ:l M’“

1 4,000

2 7.000 16.000

3 9,000 27.000 36.000

4 9.373 29.614 54.627 64.000
Exact 9.870 39.478 88.826 157.914

A comparison of Table 7-3 with Tables 7-1 and 7-2 shows that the con-
vergence of the present solution is slower than the previous ones. However, for
a transmission line with arbitrary /(x) and ¢(x), the first-order formulation is
easier to program on a computer for a general program. We also note that the
eigenvalues of Table 7-3 are all less than the exact eigenvalues, whereas those of
Tables 7-1 and 7-2 are greater than the exact eigenvalues. We have found this to
be the case for all Galerkin solutions to the first-order equations. Apparently,
such solutions provide a lower bound to the eigenvalues, whereas Galerkin
solutions to the second-order equations provide upper bounds.
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rircuited transmission line.
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Example B. We now reconsider the Galerkin solution of the first-order equa-
tions using triangle functions

_[I=N|x] x| <1/N
Nxy= {1} x| > 1/N \7-48)

for expansion and testing. These give a piecewise linear approximation to the
voltage and current. For a solution, we choose voltage-type functions

fr=wl = [T(" = ""-}] (7-89)

n=0,1,2,..., N, plus a set of current-type functions

fwi=[ e o] (7-90)

n=12 ..., N— | Note that there are two more /" than f, which corre-
sponds to the boundary condition J(0) = J(1) = 0. Note also that the T's of
(7-89) and (7-90) are centered on the same x,'s, in contrast to the shifted pulses
of (7-75) and (7-76).

The [m] matrix can again be divided into submatrices of the form (7-77),
which reduces to (7-78) with

C faf Oz Q33 o33 : : : (?-9[]

o B2y B2z Paa

0 fy: By Pie (+2)

where

1
By = [ e(X)T(x — x)T(x — x,) dx (7-93)
o

1
Bon = f {x)T(x — x,)T(x — x,) dx (7-94)
o
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Similarly, the [[] matrix reduces to the form (7-80), where

‘- B 0 B
0 -1 0 0
1 0 -1 0
a=H o 1 o - (7-95)
L g 0 I,
P E b <E g -
0 1 -
0 0 1 0
=3 0 o o 1 (7-96)
| 1 0 -1

These are first differences with respect to points separated by two intervals,
instead of one interval as for (7-70).

Again'we illustrate convergence by applying this approximation to the uni-
form transmission line. In this case the C and L matrices reduce to

[2 0 0
14 1.0 ¢ -
C=—]J0 141 : -- (7-97)

=

F
=
=

L=—0 1| 4 | - --- (7-98)

01 4

where N is the number of intervals along the line. These tridiagonal matrices are
easy to invert by special techniques [4]. The matrix eigenvalue equation (7-85),
with matrices (7-95) to (7-98), can now be solved for the approximate eigen-
values. The results are summarized by Table 7-4 for the line divided into two,
three, four, and five intervals.

A comparison of Table 7-4 with Table 7-3 shows that the piecewise linear
solution (triangle functions) converges significantly faster than the step approxi-
mation (pulse functions). This is because the piecewise linear approximation can
more closely approximate the solution than the step approximation for a given
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TABLE 7-4. Approximate Eigenvalues for a Galerkin Solu-
tion of the First-order Equations Using ¥ Current Triangles

and IV 4 2 Voltage Triangles
N AN A Ay A
2 9. 000
3 9.720 27.000
4 9.824 36,000 43.073
3 9.851 38171 71.173 54.804
Exact 9.870 39.478 88.826 | 157.914

number of functions. A comparison of Table 7-4 with Table 7-2 shows that the
piecewise linear solution of the first-order equation converges significantly
faster than that for the second-order equation. This is because in the first-order
solution we are testing both the function and its derivative, whereas in the
second-order solution we are testing only the function itself. Finally, the eigen-
values of Table 7-4 converge a little slower than those of Table 7-1, indicating
that the better behaved the expansion functions are, the faster the convergence.
However, we usually pay for faster convergence by having more difficult in-
tegrations to perform or more matrix elements to evaluate.

More rapidly converging solutions to the first-order equations could be
obtained by using a power-series solution. For example, the expansion functions
can be defined as

52 =wi=|7] (7-99)
n=0,12. .,N,and
! ) 0 =
A N
n=1,2..., N—1. Note that the f satisfy the boundary conditions

I{0) = K1) = 0, as they must unless the operator is extended. When (7-99) and
(7-100) are used, all elements of the matrices, C, L, A;, and A, are nonzero,
even for the uniform line. An even better choice of expansion functions is

f.l" = “r:-' i i:us‘;mx (7-101)
n=012...,N,and
0
S == gn m“] (7-102)
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n=1 2 ..., N. Now for the uniferm line (Il = ¢ = constant), the exact solu-
tion is obtained for each order N. This dramatically illustrates how the ease of
solution and rate of convergence depend on the choice of expansion and weight-
ing functions.

7-6. Exiended Operaiors

It is sometimes convenient to use expansion functions that do not satisfy the
boundary conditions of the problem, that is, are not in the domain of the oper-
ator. As discussed in Section 1-7, an extended operator can be defined such that
it is the same as the original operator in its domain, and has an extended mean-
ing when applied to functions outside the original domain. Example B of Sec-
tion 1-7 gives the extended operator for the second-order operator L = —d*/dx?
and the boundary conditions f{(0) = f(1) = 0. Explicitly, this extended operator
L*is
1 i

(w, Lf > = ,[, wLf dx — [jd—" (7-103)

I'.:T.I o
If the boundary conditions are changed to f(0) = f'(1) = 0, the extended
operator L* is

1

(w, IS = J‘;wadx + [w g] (7-104)

0

The choice is dictated by the condition that the last term (boundary terms) of
(7-103) or (7-104) must vanish when f is in the domain of L.
The first-order operator

d
L D& (7-105)
d )

can be similarly extended to apply to functions
=[%] (7-106)

not in the domain of L. For example, if the boundary conditions are I{0) = I(1),
and the inner product is (7-58), then the extended operator L* is defined by

w, Ly = w, LY + [W 1], (7-107)
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where, in general, the testing function is

_ | Py
W= “"’1] (7-108)
It is easy to show that L* of (7-107) is self-adjoint, and that L* = L if /(0) =
I(1) = 0. Similarly, if the boundary conditions on L were F(0) = V(1) = 0, the
extended operator would be

W, Lf y = {w, Ly — [W, V], (7-109)

instead of (7-107). Again the choice of (7-107) or (7-109) is dictated by the con-
dition that the last term must vanish when fis the domain of L.

Example. To illustrate the use of an extended operator for an eigenvalue prob-
lem, consider the second-order operator L = —d?%/dx® and the boundary con-
dition f{0) = f(1) = 0, that is, the problem stated by (7-10) and (7-11). The
extended operator in this case is (7-103). For expansion and testing functions,
take

Lh=w,=x" (7-110)
n=1,2,..., N Note that these satisfy the boundary condition at x = 0, but

not at x = 1. Following the method of moments, we use the inner product
(7-14) and determine the matrix elements as

L = Wy LIf,) = ;—:{H —m (7-111)
My = (W, [o) = ﬁ (7-112)

The eigenvalues and eigenfunctions can now be found by the algorithm of
Appendix C. Table 7-5 tabulates the eigenvalues as W is increased. Figure 7-5
shows the first and second approximate eigenfunctions, normalized according to

1= {ﬁwll‘ﬁ(ﬂ'l} s [in][mm][“n] (7-113)

and compared to the exact eigenfunctions.

An interesting phenomenon is the appearance of an extraneous eigenvalue,
as shown in Table 7-5. (There are two extraneous ones if both boundary con-
ditions are violated.) Note also that this extraneous eigenvalue is negative,
whereas all eigenvalues of the original operator are positive. Even though the


Aaron
Rectangle


1.5

1.0

5

0.3

.5

(a}

#
kY
L
N
\Y
o3 0.4 T 0.8 f 1.0
x !
;"
ExACL
b HH’}’
\ N4
N !
N i o o
N\ 7
S
ib)

Figure 7-5. Convergence of the first and second cigenfunctions, using the extended operator

and & power expansion.


Aaron
Rectangle


150 Eigenvalue Problems [Ch. 7

TABLE 7-5. Approximate Elgeavalues Calculated Using the Ex-
tended Operstor and [V Terms of & Fower Serics

N Extraneous A Ago Agn
eigenvalue

1 = 3.00

2 =31 10.161

3 —128.75 10.086 41.664

4 —353.41 9.871 43,028 | 108.383

5 — TB0.69 9.870 39.490 106.131
Exact —_ 9.870 39478 B8.826

original operator is positive definite, the extended operator (7-103) is not positive
definite. It is usually easy to recognize extraneous eigenvalues introduced by
extending an operator, because they do not converge to a limit and the corre-
sponding eigenfunctions tend to be irregular and do not satisfy the boundary
conditions.
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Sons, Inc., New York, 1956.

[2] J. W. Dettman, Mathemarical Methods in Physics and Engineering, McGraw-Hill
Book Co., New York, 1962,

[3] 5. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication
Electronics, John Wiley & Sons, Inc., New York, 1965, Chap. 1.

[4] P. Henrici, Discrere Variable Methods in Ordinary Differential Equations, John
Wiley & Sons, Inc., New York, 1962, pp. 350-355.
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Cylindrical Waveguides

8.1. Second-order Dilerentiial Eguaiion

In this chapter we consider the problem of electromagnetic waves in a hollow
conducting cylinder of arbitrary cross section. The medium within the cylinder
is assumed to be homogeneous and isotropic, such as free space. Waveguides
containing inhomogeneous and/or anisotropic media can be treated by methods
similar to those used for resonant cavities in Chapter 9.

The usual second-order differential equation formulation for the problem
will first be summarized. Let Fig. 8-1 represent the cross section of a waveguide
with conducting boundary C. The transverse coordinates are denoted x and y,
and the axial coordinate z. The electromagnetic field is then related to a scalar
wave function § which satisfies the Helmholz equation

Ay @
Hﬁ+a—;+k*¢-ﬂ (8-1)
For TM (transverse magnetic) modes, y is subject to the Dirichlet boundary
conditions
=0 onC (8-2)
and, for TE (transverse electric) modes, ¢ is subject to the Neumann boundary
conditions
dyf
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Figure 8-1. Cross section of a cylindrical waveguide.

Here n 1s the direction normal to C and k 1s the cutoff wavenumber, related to
the cutoff wavelength A_, of the waveguide by

_11:

k
Ao

(8-4)

The relationship of ¥ to the electromagnetic field, and of k to various waveguide
parameters, can be found in many texts, for example, reference [1].
To place (8-1) into the standard form Ly = Ay, define the operator

g
L='?2='EF'EF" (8-5)

and the eigenvalue 1 = k%, Sections 8-2 and 8-3 consider approximate solutions
to this eigenvalue problem.

5.2. Second-order Difference Operaior

The simplest numerical solution of (8-1) is obtained by approximating the
differential operator (8-5) by a difference operator. The second-order difference
approximation to d*)/dx® is given by (1-55), with a corresponding formula
holding for 8%0/dy®. If we take equal increments Ax = Ay = h, the finite-
difference approximation to (8-5) becomes

L = 14y = L D0+ b, 3) 4 H(x = by ) 4k, y + )

+ Y(x, y — b) — 4y(x, y)] (8-6)
To obtain a set of algebraic equations, the equation

Ly = (8-7)
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can be satisfied at discrete points in the guide cross section. As discussed later,
this is equivalent to using pulse functions as a basis and point matching for
testing.

To obtain the classical method of nets, define a grid of lines spaced a distance
h apart, as shown in Fig. 8-2. This defines a mesh of points to which (8-7) is
applied. For example, at point 0 of Fig. 8-2, equation (8-7) becomes

5 Wt Y Y+ Ya = $o) = Ao (8-8)

For the boundary conditions ¢+ = 0 on C all points on the boundary are zero;
hence . = 0 in (8-8). If the boundary does not coincide with grid lines, such
as on the top and right sides of Fig. 8-2, special techniques are required. One
way is to define extra points on the boundary and modify L? to account for
unequal intervals [2]. Another way is to use the method of moments as shown
below.

For the boundary conditions dy/én = 0 on C, the usual approach is as
follows. For a point 0’ on the boundary (Fig. 8-2), we set §; = i, and the
modified (8-8) for the point becomes

o3 W+ 20+ Ve — o) = Mo (8-9)

If the points are not on the boundary the modification is more difficult. Again
the method of moments provides a more direct way to treat boundary conditions,
as we now discuss.

For a moment solution, expand ¢ as

W =3 a,f, (8-10)
where the basis functions are pulse functions
Jo= P(x — x,)P(y — y,) (8-11)
—

Figure 8.2. Mesh points in & waveguide cross section.
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In other words, if As, is a square of sides A centered on x, and y,, then f, =1
on As, and zero elsewhere. For testing, let w, = f,. As an inner product, take

S o> = [[£(x, yalx, y) dx dy (8-12)
R
where R is the waveguide cross section within C. Now a routine application of
Galerkin's method yields
[land(2a] = AL, ][22, ] (8-13)

where [/,,] is a second difference matrix and [m,,] is a diagonal matrix. To be
explicit, define the distance function

d(m, n) = \/(xm — %0)* + (¥ — yu)? (8-14)
Then, for the boundary condition § = 0 on C, the elements of [/,,] are
[ 2 dimn)=0
Lo =1 —

1 dim,n)=h (8-15)
0 dimn=>h

and those of [m,,,] are

h? m=n
Mgy = 0 msn (B-16)
For the boundary condition éy/dn = 0 on C, the interior pulses give elements
the same as (8-15) and (8-16), whereas pulses on the boundary give modified
elements
.. (modified) = (A4,./h*)l,..
(8-17)
m,,(modified) = A4,

where A, is the area of f,, within C. When the boundary coincides with mesh
points, the moment solution is identical to that obtained from (8-8).

The rate of convergence of the solution can be increased by using higher-
order difference operators [2, 3], but this increases the complexity of the matrices.
Another possibility is that of constraining every other element of the matrices,
in a manner similar to that suggested in Section 3-3. This has the effect of giving
approximately the same accuracy for the lower-order eigenvalues, but the matrix
is only one fourth the size of the original matrix.

Solutions of high accuracy can be obtained by using many mesh points [4].
However, the matrices are then of high order, and iterative solutions become
more practicable than direct matrix methods. The procedure usually used is to
make an initial guess at  and A, and then apply (8-8) to each mesh point. This
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is a successive approximation method, also called a relaxation method. After
several passes over the mesh, the resultant approximate y is substituted into the
Rayleigh quotient

S Va L,

=y S

to determine a new approximation to the eigenvalue 1. Because of the stationary
nature of (8-18), if i, is correct to an order x per cent, 1 will be correct to an
order x* per cent. The new A is then used in (8-8), additional passes made over
the mesh, resulting in a still better approximation to y, and so on. A good
description of the procedure is given in reference [4]. There is an extensive body
of literature on difference equations and relaxation methods, as referenced in

[3] and [4].

Example A. A number of examples obtained by using 8 mesh approximation
to the boundary have been given by Davies and Muilwyk [4]. By using very large
numbers of mesh points, the effect of the approximate boundary becomes small.
The relaxation method of obtaining the eigenvalues and eigenfunctions is used
because of the large number of points. Boundary conditions are imposed by
taking ¢ = 0 on the boundary points for the TM case and by using (8-9) for the
TE case. Table 8-1 summarizes the results for a waveguide with circular cross

TABLE 8-1. Difforence Equation Results for a Circular Wave-
guide of Diameter d, Using the Best-fit Inside Mesh [4]

{a) Fundamental TE mode (true kd = 3.6820)

dih Approx. kd Per cent errror | Extrapolated

B 3.4389 6.6
16 3.5269 4.2
32 3.5978 2.3 39122
&4 3.6329 1.3 3.6681

{b) Fundamental TM mode (true kd = 4.8100)

dih Approx. kd Per cent error Extrapolated

B 5.6665 17.7

16 5.2471 9.1
2 4.99%6 39 4.6739
64 4.899%4 1.9 4.8339
128 4.8533 0.9 4.8150

256 4.8327 0.5 4.8160
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section of diameter d. The convergence 1s relatively slow, but by using an extra-
polation procedure [5] accurate results are obtained. For example, in the TE case,
the extrapolated error in kd is 0.38 per cent for d/h = 64. In the TM case the
extrapolated error is 0.12 per cent for dfh = 256.

Example B. We here consider some problems that arise with boundary points.
Consider the Neumann case dy/dn = 0 on C (TE modes). Figure 8-3(a) re-
presents three possible mesh point patterns in the vicinity of a boundary B.
Figure 8-3(b) shows the corresponding pulse approximation to be used in the
moment solution. For case I, the moment solution gives the result usually
obtained by difference equations. For case 1I, the difference equation approach
is to set ¢y = ¢by, and obtain

23 (W + Vi + Vo= W) = Ao (819

instead of (8-9). The moment approach again gives the same result. For case III,
a difference equation approach taken by Tang and Lo [3] is to set ¢4 = ¢, and
again obtain (8-19). However, as evident from Fig. 8-3(b) (case III), the cor-
responding pulse basis is incomplete, and poor convergence is obtained. Table
B-2 illustrates convergence of kb = ﬁ for the dominant TE,; mode of the

Case | Case 11 Case 1M
. . . . . . . . . .
. L ™ . @ . e . .
idl llﬂ Ih L l-il l'u l'ﬁ L d 11] JI -
. g . . . ™ ™ £ .
. . » M . » . - . .
{a) Mesh points
o
r i
| | [
| 1 i
- . | - g
X 1 x
(b} Pulse bases

Figure 8-3. Possible mesh patterns and corresponding pulse bases.
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TABLE 8.2, Convergence of kb Using Diff-
erence Equations with Boundary Treated as
in Fig. 8-4 (Rectangular Waveguide, b = 2a,

dominant TE ) ; mode)
Mo, of feld Cases Case III
points I and II
2 2,82 4.24
3 3.00 4,00
4 3.06 382
5 3.08 3.70
[ 3.10 1,62
7 312 3.56
Exact kb 314 314

rectangular waveguide, using the three cases of Fig. B-3. The poor convergence
of case Il is clearly evident. Unfortunately Tang and Lo [3] use case 111 for
computations, and hence their TE results converge slowly. However, if the
boundary pulses are extended an extra half-interval to the boundary, meshes
of type III can be used with good results.

5.3. Moment Solutions

We now consider moment solutions using the differential operator. Pulse
functions cannot be used for expansion because they are not in the domain of L.
However, triangle functions can be used to obtain approximate solutions for
waveguides of arbitrary cross section. For now we assume that all expansion
functions satisfy the boundary condition at C. If they do not, the extended
operator, discussed in Section 8-4, can be used.

Again let the waveguide cross section be covered by a mesh, as shown in
Fig. 8-2. The mesh intersections define a net of points a distance A apart. Let the
expansion and testing functions be

Jo= Wy =T(x = x)T(y = yu) (8-20)

where x,, y, are the mesh points and

T(x) = h (8-21)
0 x| > h

are the triangle functions discussed in Section 1-5. To evaluate the matrix
elements, use (8-20), the operator (8-53), and the inner product (8-12). When the
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expansion functions lie wholly within the guide cross section, the elements of
[/.s) are

83 d(m,m)=0
law=1{—1/3  d(m,n)=hor h/2 (8-22)
0 d(m, n) > h,/2

where d(m, n) is the distance function defined by (8-14). Similarly, the elements
of [m,,,] are

-k d(m,m)=0

= K? dim,m)=h 8-23)

wh dm,m)= hy2
0 d(m, n) > h/2

A convenient way of illustrating these results is by matrix patterns, as shown by
Fig. 8-4(b). For comparison, the matrix patterns for the usual difference equation
approach are shown in Fig. 8-4(a).

In the case v = 0 on C (TM modes), mesh points on the boundary are taken
as having no expansion functions at them. All other points have expansion
functions lying wholly within C, and all matrix elements are given by (8-22) and
(8-23). For the case dy/dn = 0 on C (TE modes), interior points have expansion

o|—1|0 Blolo|o
—1| 4 |—1 011
o0j—1]|0 0|00
- ey
(&}
2
‘}—1 —1]—1 f; 1|al
—1| 8 |—1 46| 4
=1|-1]-1 1141
[ - ™

(b)

Figure 8-4. Muiriz patterns for the solutions of Sections 8-2 and 8-3. (a) Difference equa-
tion, pulse functions, (b) differential equation, trisngle functions.
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functions which are zero at the boundary. To satisfy the boundary condition,
we either add additional expansion functions at the boundary points, or modify
the expansion functions adjacent to the boundary points so that they are not
zero on C. The first method requires additional expansion functions, and hence
increases the size of the matrices. The second method keeps the size of the
matrices the same for both TE and TM modes, which is an advantage from a
computational standpoint.

Example. To compare convergence of the various methods, consider the
rectangular waveguide of Fig. 8-5(a). Let the sides be b = 2a, and cover the
cross section by a mesh which has equal increments & in the x and y directions,
as shown. (A modification for unequal increments is simple.) For TM modes
(¢ = 0 on C), we use the pyramid expansion functions of (8-20). Since all mesh
points are interior points, equations (8-22) and (8-23) apply, and the solution
is obtained in a straightforward manner. Table 8-3 shows convergence of the
lowest-order TM;, mode and of the higher-order TM;, and TM;,; modes, and
compares them to the corresponding difference equation solutions. It is interest-
ing to note that whereas the difference equation converges from below the correct
solution, the moment solution converges from above. Because the operator is
positive definite, a Galerkin solution (f, = w,) using the exact operator must
converge from above. Neither solution converges particularly fast, and both
give about the same accuracy.

For TE modes (dy/dn = 0 on C), the solution can be obtained either by
adding additional expansion functions at the boundary points or by modifying
the pulses at the boundary as shown in Fig. 8-5(b). For comparison we shall
call the first method case I and the second case 11. In case I, the /,,.and m,,
matrix elements for boundary points must be modified from (8-22) and (8-23).
In case II, the matrix elements for points adjacent to the boundary points must
be modified. Table 8-4 shows convergence of kb for the TE,; and TE,; modes,
and compares it with the corresponding difference-equation solution. Again
all Galerkin solutions must converge to the eigenvalues from above, because the

i ' i t !
BUSHEE:
S e e = S S ST
[ . N ,A-\ X
. M |-.—zl.!r—-| s

{a} b}

Figure 8-5. Modification of cxpansion functions for TE modes. (a) Mesh points, (b) expan-
sion functions.
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operator is positive definite. In interpreting Table 8-4, keep in mind that case I
and the difference equation involve larger matrices than case 1l because of the

additional boundary points.

TABLE 8.3, Convergence of kb Obtained by a Moment Solution amd by a Difference Sol-

Cylindrical Waveguides

ution (Rectangular Waveguide, b = 2a, TM Modes)

’ TH. 1 TM:I TM:l
POINIS | Triangles | Diff. eq. | Triangles | Diff. eq. | Triangles | Diff. eq.
1%3 7.641 6.432 9.798 8.000 13.220 9.307
2%5 7,305 6.756 9,301 8,485 12,297 10.392
3%7 7,179 6.873 9,116 B.659 11.876 10.794
4%9 7.124 6.927 9.033 §.740 11.678 10.984
Exact 7.025 8.886 11.327

[Ch. 8

TABLE 8-4. Convergence of kb for Moment and Difference Solutions: Case [, Addidonal
Triangles on Boundary; Case I1, Modified Pulses (Rectangular waveguide, b = 2a, TE Modes)

Interior TEo TE:
mesh

points Casel | Casell Diff. eq. Case | | Casell Diff. eq.
1 %1 ki) 3.464 1,061 9.798 — 8.000
2 x5 3178 3.247 3.106 9.295 10.579 B.485
Ix7T 3162 3.191 3.121 9.115 9.614 B.659
4 %9 3.155 3.170 3.129 9.033 9.284 8.740
Exact 3.142 8.886

A considerable simplification of the computations for the rectangular wave-
guide is possible. The expansion for the unknown in all cases (including pulses
with the difference operator) can be written

f=2 o fo=[X B XX v,¥, (0]
= X(x)¥(y)

Hence f'is a product solution such as obtained in the usual method of separation
of variables. The equations therefore separate into two one-dimensional equations

(8-24)

d*X
~aa T AX

it (8-25)
——> =AY

dy
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and each can be solved separately, either exactly or approximately. The two-
dimensional problem has eigenvalues

kDP =A=2, + 4, (8-26)

and eigenfunctions (8-24). Tables 8-3 and 8-4 were constructed using this
simplification. However, the procedure is not applicable to guides of cross
section other than rectangular.

8.4, Extended Operators

When the waveguide walls do not coincide with the mesh boundary, as in Fig. 8-2,
we can either modify the expansion functions at the boundary or extend t]:u.'.
operator. In this section the latter approach is considered.

To summarize the problem, we have Ly = Ay, where i = k* and

" 5! ai
L=-¥ =—&?-@—: (8-27)

This operator is formally self-adjoint with respect to the inner product

S 9> = [[ 7Gx, ya(x, y) dx dy (8-28)
R

where R is the cross section of the waveguide. When the Dirichlet (y = 0 on C)
or the Neumann (dy/dn = 0 on C) boundary conditions are met, L is self-
adjoint and positive definite.

If the expansion and testing functions do not satisfy the boundary conditions,
we can extend the operator for a moment solution. By Gauss' theorem, it is
easy to show that in general

g.Li>=<{Lg.f) + f (f— -g %) dl (8-29)

where C is the waveguide boundary and n is the outward normal. We wish to
define an extended operator L* so that L*f = Lf when f satisfies the boundary
conditions and

g, Lf> = <Lq./> (8-30)

when f does not satisfy the boundary conditions. For TM modes ( = 0 on C)
_these conditions can be met if L* is defined by

d
<9, LinS> = <o, Lf> — § 151 dl (8-31)
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That (8-30) is now satisfied is evident from (8-29). For TE modes (&/én = 0 on C),
the extended operator L* can be defined as

@ Lief> =<0, 1> + § g o dl (832

Again it is evident from (8-29) that (8-30) is satisfied.

Once we have the appropriate extended operator, the moment solution pro-
ceeds in the usual manner. We shall not give examples here because of the
detail involved. In general, solutions converge in a manner similar to the one-
dimensional problems treated in Section 7-6.

§8:5. Firsi-order Differential Equations

Any second-order differential equation can be represented as a set of first-order
differential equations. The equations

. SS9 (8-33)

are easily shown, by substitution, to be equivalent to (8-1). To place (8-33) in
standard form, define

i 8 @7
0 H E’
d
L=|-= 0 0 (8-34)
0
oy 0O
and
¥
f= (8-35)
v
Now the eigenvalue problem is represented by
Lf=kf (8-36)

where k is the eigenvalue.
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An appropriate inner product for the new function space is
s> = [[1ifs dx dy
= JJH"HE’: + ugu; + vyv;) dx dy (8-37)

which satisfies postulates (1-2) to (1-4). The formal adjoint of L is found as
follows: '

o 2 % v
ot =[[n w o -2 0 o fuas
_J;[[ (‘3"’ a"’) w2y, a:;,: s (8-39)

Making use of the rule for differentiating a product, we can rearrange this to

fos L) = _U[nh o a")—u;%u ,%“Hds

+ ';U[E (Yryuz — uya) + -‘% (¥y0; — P:lﬁ’:l] ds  (8-39)

The first integral is {Lf,, /5. The second integral can be reduced to a boundary
integral by the Gaussian integral theorem [6]. The result is

o Lf> = KL 2> + § Inlssz = wndha) + myyo = vl dl - (8-40)

where n, and n, are the x and y components of m, respectively. Hence L is
formally self-adjoint. For TM modes, i = 0 on C, the boundary terms of (8-40) -
vanish, and L is self-adjoint. For TE modes, dy/dn = 0 on C, which 15 equivalent
to

nu+n,v=0 on C (8-41)

Again the boundary terms of (8-40) vanish and L is self-adjoint.
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S-6. Momeni Soluilons

Solution of the first-order equations by the method of moments proceeds in a
manner analogous to that for the one-dimensional case (Section 7-5). It is
assumed for now that all expansion functions satisfy the appropriate boundary
conditions. For convenience, we define three types of expansion and testing
functions,

"J"u[xt ¥
0 (8-42)

fl. - “": - I-I,J:I, .]"'] {3'43]

fa=wi=| 0 (8-44)
| v, ¥) ]

MNow the unknown f is expanded as
f= E aﬂf:l T E b&n—f; - Z Ta f: {E'dﬂ

where a,, f,, and y, are constants. It is not necessary that there be the same
number of n# in each summation. An application of the method of moments to
(8-36) gives the partitioned matrix equation

21 01 0B =M O :noi 0|15 (£-46)
i 01 0 ]|, 0 i 0 ; mua]lvs

du
ey —
o _L[q:n,,, - dx dy (8-47)
dv
o e e e -
Ion = Wom _L[lﬁf. 3y dx dy (8-48)
mt%, = ([ gng, dx dy (8-49)
R

with g = {, u, or v. The matrix (8-46) represents a set of three matrix equations.



Sec. 8-6] Moment Solutions 165

The problem can be reduced to a single matrix equation as follows. From the
last row of (B-46) we obtain

1
L¥m] = 7 Lm™]" '] [,] (8-30)
Similarly, from the second row of (8-46) we obtain
[a] = [m™1 ' [1](] (8-51)

These two results can now be substituted in the first row of (8-46) to give the
eigenvalue equation

[Laad[] = k*[=,] (8-32)
where
[Lpwd = [m** 17 H{{][m™] ' [™] + (1% 1[m™] ' [1¥]) (8-53)

We can now solve (8-52) in the usual manner for eigenvalues k* and eigenvectors
[2,). The corresponding [y,] and [f,] are then determined by (8-50) and (8-51).
The approximate eigenvalues k of the original equation (8-36) are now + ._,."'F,
and the corresponding approximate eigenfunctions are given by (8-45).

Example. Again consider the rectangular waveguide, Fig. 8-5(a). Pulse func-
tions can be used for expansion, but the convergence is slow. (See Table 7-3 in the
one-dimensional case.) Triangle functions for expansion and testing give much
faster convergence, as illustrated by Table 7-4. Hence we choose

&n =U, = U= T{x = IH}T(}P = Fn:] {E-H}

where the T are triangle functions of width 2h and centered on a mesh point
X, ¥,. Evaluation of the matrix elements (8-47) to (8-49) is simple, and details
are not given here. For TM modes, y = 0 on C, and hence y, centered on interior
points only are used. However, u and v do not have boundary restrictions, and
either additional boundary functions must be used or the functions adjacent to
the boundary must be modified as in Fig. 8-5(b). For TE modes, i is not sub-
jected to boundary conditions, but u and v require boundary conditions accord-
ing to (8-41). To illustrate convergence, Table 8-5 gives the results for the TM,,
mode of a rectangular waveguide of sides b = 2a. A comparison of this result
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with the TM;, mode of Table 8-3 shows that the convergence is significantly
faster when first-order equations are used. Basically, this is because we are
expanding and testing both v and its derivatives, instead of only  itself, and the
operator involves only first derivatives.

TABLE 8-5. Convergence of
kb for Firsti-order Equations,

Triangle Expansion Functions
(Rectangular Waveguide, b =
2a, TM 3; mode)
Mesh TM™;;
points mode
1x3 8,483
2x5 £.818
IxT B.866
4x9 B.878
Exact B.886

8.7. Exiended Operaiors

If the expansion functions for a moment solution do not satisfy the boundary
conditions, the operator must be extended. We have already derived the general
relationship between {f,, Lf;) and {Lf,,f;> in Section 8-5, given by (8-40).
To extend the operator, boundary terms must be added so that L* is self-adjoint
and L* = L when fis in the domain of L. For TM modes, = 0 on C, and the
appropriate extended operator is defined by

i Linfay = i Lfad + § dalmu +mpv)dl - (855)

That LT, is self-adjoint follows from (8-40). For TE modes,n,u + n,v = 0on C,
and the extended operator is defined by

o Liefd = S L) = § ¥ilnaus + mpodl - (8-56)

Again it is evident from (8-40) that L% is self-adjoint.

Once the extended operator is known, a moment solution proceeds as in
Section 8-6. The only change is the use of the extended operator in place of the
original operator. For TM modes, this involves no change in the formulas for
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matrix elements, (8-47) to (8-49). However, for TE modes, we find (8-47) and
(8-48) must be replaced by

mzl‘:s-ﬂ%u,dxdf (8-37)
m-mn-ﬂ%u,dxdy (8-58)

while (8-49) is unchanged. Note that (8-47) and (8-57) are equal if the original
boundary conditions are met but differ if they are not met, and similarly for
(8-48) and (8-58). It is interesting to note that we need never evaluate the contour
integrals of (8-55) and (8-56).

8.8, Use of Generalized Impedances

The modes of a waveguide can be determined using the generalized impedance
concept discussed in Chapter 5. We here consider only waveguides containing
homogeneous isotropic matter. The procedure can be extended to waveguides
containing arbitrary media by adding additional impedance terms as described
in Section 5-3. Similar methods also apply to resonant cavities.

The waveguide cross section is again defined by Fig. 8-1. Let the field internal
to the waveguide be expressed in terms of the current J on the waveguide walls
.t :

EQ) = § J@)G. 9, k) dl (8-59)

where I' is the free-space tensor Green’s function. The wavenumber k is shown
explicitly in the argument of I" because it is the eigenvalue to be determined.
Specializing (8-59) to C, and settingm x E = 0 on C, we obtain the appropriate
eigenvalue equation

O=nx }c.l[p’}l“{p, p.kydll ponC (8-60)

The cutoff wavenumbers of the guide are those k for which (8-60) is satisfied.

To reduce the problem to a matrix equation, we apply the procedure of
Section 5-1. The only difference between (5-2) and (8-60) is that E' = 0; that is,
there is no incident field. Hence the appropriate matrix equation is (59) with
the right side zero; that is,

[ZA[I]=0 (8-61)
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Here Z_, and I, are the generalized network parameters of Section 5-1. For TM
modes in a cylindrical waveguide, the Z,, are given by (3-22), and for TE modes,
by (4-20) with y given by (3-59).

The Z_, are in general complex, and so also are the eigenvalues k obtained
from (8-61). This is because (B-61) is an approximate representation of the
problem, and any approximation to the correct J must radiate some field. In
other words, the field external to C is not identically zero. We can modify the
procedure to avoid this complication as follows. The field from J need not
satisfy the radiation condition because the true field vanishes external to C. The
imaginary part of I' has the appropriate singularity at a source point, and the
equation

0=nx f]? Jp)Im[T(p.p’, k)]dl' ponC (8-62)

is equally valid for the problem. The matrix approximation to (8-62) now
becomes

[(Xmal(1,] =0 (8-63)

instead of (8-61). The elements [, are real, and X, is Im(Z,,). Hence we need
consider only the reactive parts of the generalized impedances.

The eigenvalue equations (8-62) and (8-63) are nonlinear in k; that is, the
eigenvalue k does not appear as a simple proportionality factor. For the matrix
equation (8-63), the eigenvalues k are determined by

det | X (k)] =0 (8-64)

This can be solved by successive approximation. Perhaps the simplest method
is that of Newton, summarized as follows. Let det|X| be expanded in a Taylor
series about some approximate k, as

det | X| = det |X(k,)| + % [det |X(k.)[]Ak + - - - (8-65)

where Ak = k — k, is the change in k. Hence the correction to k is

det |X(k,)|

Ak = — =
2k, Ldet 1X1]

(8-66)

Because the derivative of a determinant is a complicated expression, a difference
approximation is used in the denominator of (8-66). Convergence to the eigen-
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values of (8-64) is normally rapid. Once the k is found, the eigenvector [/] can
be found from (8-63) by matrix inversion, after eliminating one of the constituent
equations.

If the waveguide cross section is symmetrical about an axis in the xy plane,
the problem can be reduced to two cases, one for modes with even symmetry and
one for odd symmetry. The complete reactance matrix is then of the form

_[t41 8]
o= (B B (8-67)

where [A%] and [B®] are reversed matrices, obtained from [4] and [B] by reversing
the order of both rows and columns. Now k for the even modes is found from

det|d + B| =0 (8-68)
and for the odd modes from

det|d —B| =0 (8-69)
The determinant of [ X] is the product of the determinants (8-68) and (8-69).
Example. Consider the TM modes of a cylindrical waveguide. The appro-

priate specialization of (8-60) is (3-5) with E, = 0. The modified equation (8-62)
is the imaginary part of this, or

0= jic.:,tp*w.,l:klp —p'Ddl' ponC (8-70)

where N, is the Neumann function. The elements of the reactance matrix of
(8-63) can be approximated by the imaginary part of (3-22), which, with an
appropriate change of multiplers, is

2 o
(AC,) - Iug( ) m=n
™ R k ﬁC_ I:E-.”:I
ﬁf:! ﬁcﬂ Nﬂl:k 1Pn| = P.” msn
where a = @.11[. . .. These formulas have been applied to rectangular wave-

guides with sides b/a = 9/4. Equation (8-71) was used for 52 points on C, and
every other point constrained according to (3-24), giving a 26 by 26 matrix.
Use of symmetry conditions according to (8-68) and (8-69) further reduced the
problem to two 13 by 13 matrices.

Figure 8-6 shows a plot of det|4 + B| for the TM even modes. There are
appropriate zeros corresponding to the TM,, and TM,; modes, but there are
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also some extraneous zeros. These are due to the approximations made in the
matrix equation. They correspond to solutions of (8-68), but not of (8-70). These
extraneous roots will change as the expansion functions are changed, where-
as the correct roots are fixed. When the eigenvectors are computed using

T

ik

2L
m I
ey 0 a1 I “u, S i I I \K. j
¥ 8 8 9 10 T 12 13
]
& kb /

-]

eatrancous ook

-2k

=3 =

—f§ =

Figure 8-6. Flat of det | A 4 B|, showing cigenvalues and extrancous sercs.

(8-63), the correct roots yield good approximations to the current on the wave-
guide walls. The extraneous roots tend to give eigenvectors which do not repre-
sent- continuous distributions of currents on the walls, and can be recognized
as extraneous by this characteristic. Table 8-6 summarizes the approximate eigen-
values obtained from the correct roots and compares them with the exact
eigenvalues.

the Generalized Impedance Methed (Rectangular

Waveguide, bja = 9/4, TM Modes)
Mode T™,, ™, TM;,
kb approx. | 7.76 949 | 1181
kb exact 7.74 946 | 1178
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9

Cavity Resonators

9-1. ENiatement of the Problem

The general problem of a resonant cavity of arbitrary shape, filled with an
arbitrary inhomogeneous and/or anisotropic medium, is considered in this
chapter. We explicitly discuss the solution in terms of the modes of the empty
cavity, but other sets of expansion functions can be used if desired. A medium
anisotropic with respect to electromagnetic fields is one characterized by a tensor
permeability and/or a tensor permittivity. The conductivity is here considered
a part of the permittivity, and hence it too may be a tensor. Important special
cases of anisotropic media are ferrites in a d-c magnetic field (tensor permeability)
and plasmas in a d-c magnetic field (tensor permittivity). The name gyrotropic
media is often given to such ferrites and plasmas. The general solution is special-
ized to the case of a rectangular cavity uniformly filled with gyrotropic plasma,
and representative numerical results are given in Section 9-4.

The solution is obtained by the method of moments, as discussed in Chapter 7.
The modes are expressed as an expansion in terms of a set of functions complete
over the cavity space. The result is a matrix eigenvalue equation of infinite
dimension, the eigenvalues of which are the resonant frequencies and the eigen-
vectors of which are the coefficients of the modal expansion. For numerical
results the matrix equations are truncated and the resultant finite equations
solved by digital computation. In those cases for which the exact solution can be
expressed as a finite sum of the expansion functions, the matrix solution reduces
to the exact solution.

ire
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Once Maxwell’s equations are written in standard operator notation, the
solution can be obtained in a straightforward manner. For time-harmonic
fields, exp( jwt) time dependence, Maxwell's equations are

Vx E = —jop[p]H
(9-1)
V x H = jwegy[e]E

where [u] is the relative permeability tensor, [g] the relative permittivity tensor,
Ho the free-space permeability, and g, the free-space permittivity. Energy dis-
sipation may be included in the [u] and [&] when present.

To express (9-1) in operator form, define a field matrix

E
o-[3
and the operators
g = _ | #ole] 0
ol P B Sl ) B
Then Maxwell's equations are
L = joM¢ (9-4)

To fully specify the eigenvalue problem, boundary conditions on ¢ must be
given. For cavities bounded by perfect electric conductors

nxE=0 onS§S (9-5)

where § is the cavity boundary and n the unit outward normal. Other boun-
dary conditions may be chosen if desired. Equations (9-4) and (9-5) define an
eigenvalue problem with eigenvalues jw and eigenfunctions ¢.

A suitable inner product for the problem is

(1 62 = [[[ (B B, + H, - Hy) de (9-6)

where 7 is the region bounded by S. It is easy to show, by means of the diver-
gence theorem, that L is self-adjoint; that is,

(@1 Lp2) =Ly, ¢2) (9-7)
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for the domain defined by (9-5). The adjoint of M denoted by M* and defined by

(@1, M@3) = My, §2) (9-8)
is readily determined as

glf] 0
M‘-[ﬂ -Fu[ﬂ]] 09
where [f] and [/] are the transposes of [¢] and [u]. Hence the adjoint equation to
(9-4) is

L¢* = joM"$* (9-10)

where the boundary conditions on ¢* are the same as on ¢, given by (9-5). The
eigenvalues of (9-10) are, of course, the same as those of (9-4).

Note that solutions to the adjoint equation are the modes and resonant fre-
quencies for the same cavity filled with matter characterized by permeability and
permittivity tensors which are the transposes of those in the original problem.
Hence transposing the constitutive tensors leaves the resonances (eigenvalues)
unchanged, but the modes (eigenfunctions) are different.

9-2. Moment Selution
Following the method of moments, we express solutions of the original problem
and the adjoint problem as
¢-¥¢Fj; {g"ll]
w-ﬁﬂtﬂ'l (9-12)

where f; and g, are functions in the domain of L, and «; and f, are constants. We
then substitute (9-11) into (9-4) and take the inner product with each g,. The
result is

(g.,i;);u,f,> -(ghjmu);a,@ (9-13)
for all i. Since L and M are linear, (9-13) reduces to

);,u Kgn LI -Jm); algn Mf}> (9-14)
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for all i. Hence we have a set of equations, or a matrix equation, to solve. For
simplified notation, define

ly =g Lfp (9-15)

my, = {g;, Mf> (9-16)

Let [/] and [m] denote the matrices with elements /;; and m,;, respectively, and
[a] the column matrix of the «;. Then (9-14) can be written

[11[a] = jo[m][a] (9-17)

This is a matrix eigenvalue equation with eigenvalues jw and eigenvectors [a].
The eigenvalues are solutions to

detlly, — jom, | =0 (9-18)

The eigenvectors [«] corresponding to the eigenvalues jw define approximate
eigenfunctions to the original problem by (9-11). If complete sets of f; and g, are
used, exact solutions to the original problem are obtained, at least in principle.

The eigenfunctions of the adjoint equations are not needed, but may be found
by a dual procedure. Instead of (9-14), we have

;ﬂj{ft- Lgp =jw ; BSuw Mg ) (5-19)

Since L is self-adjoint, and M* related to M by (9-8), equation (9-19) can be
written in terms of the transposes of the matrices [/] and [m] as

[1[B] = jeo[M][A] (9-20)

Hence the equation for [f] is the transpose of the equation for [a], (9-17). The
eigenvalues are still solutions to (9-18), because transposing the matrices does
not change the determinant.

The solution for a one-term representation gives

(¢, L)

= (9-21)
@ =9 My

which is the usual stationary expression for the eigenvalues. If we start from
(9-21), use expansions (9-11) and (9-12), and apply the Rayleigh-Ritz constraints

dw Jdwo ’ '
—=—=0 foralli (9-22)
doy, OB,
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then (9-17) and (9-20) are obtained. Hence the two methods are equivalent. In
terms of the field vectors, (9-21) can be written

(H*+Vx E+E*+V x H) d
m x E + x H) dr -

joo =
[[[ (eo®= - [€JE — poH® - [uIH) dt

This reduces to Berk’s result when specialized to loss-free ferrite media [1].

A complete set of functions, corresponding to the modes of empty cavities
having the same boundary S, are chosen for the expansions (9-11) and (9-12).
The normalized electric mode functions are defined by

V x V x EY = (0f)?eo o E? (9-24)
nxE'=0 onS (9-25)
[[[eB? - E? de =1 (9-26)

where the superscript 0 denotes “ empty cavity " and subscript i is the mode index.
The eigenvalue @? = 0 is of infinite degeneracy and an infinite set of irrotational
electric mode functions F; are defined by

VxF' =0 (9-27)
where (9-25) and (9-26) apply also to the F?. Methods of constructing ortho-

normal sets of F} are discussed by Slater [2]. Similarly, a set of normalized
magnetic mode functions are defined by

V x Vx H} = (o)) po H (9-28)
pxVxH =0 onS$ (9-29)
- mpuH? HO dr = 1 (9-30)

The boundary conditions (9-29) are not necessary, but this choice ensures that

the w] of (9-28) are equal to those of (9-24). Again, w” = 0 is of infinite de-

generacy, and a set of irrotational magnetic mode functions G} are defined by
VxG=0 (9-31)

n-G'=0 onS (9-32)
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and normalized according to (9-30). An orthonormal set of G! is constructed
in a manner analogous to that for the F}.
A complete set of f; and g; can now be chosen as

B el
p=d=[5] #=d=[5] (9-33)
mr=gt=(g| fe=at=[g 034

Note that this is an orthonormal set with respect to the empty cavity operator

_|® 0 :
M, 0 —Pu] (9-35)

as weight function; that is,
{_ﬂ",Mufj'}=ﬁ if A# B

A Mo fPy=6; ifA=B

(9-36)
where 4 and B are arbitrary permutations of E, F, H, G, and é;; is the Kronecker
delta. As further shorthand, define

mi® = (fi*, MfP)
HE = <A LD
For M defined by (9-3), we find

(5-37)

m” - mij - ml’_f = mﬂﬁ = ﬂ {9.33':'

HE HF GE
my; =my; =nmy =m =0

with all other m;; not identically zero. For L defined by (9-3), we find all /;; = 0
except the diagonal elements, and

jwi 0 0
. 0
e == o Jer 0 (9-39)

0 jey

This is a diagonal matrix with elements equal to j times the empty cavity resonant
frequencies.
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In terms of the expansion functions (9-33) and (9-34), the matrix equation
{9-17) is now

0 0 5 O[] [mEE mEF 0 0 ][ef]

F FE FF F
DI 0 0 0 “j =jm m” mu DHH ﬂﬂ Ej {9_40}
[0 0 0 0] |«f] [0 0 mi" mi° |«F

where each element 15 a submatrix and the elements nf[mf]nr:themeﬂicinnta
of f{*. From the second row of (9-40), we find

[«F] = —[m" ]~ '[m"][="] (9-41)
Similarly, from the last row of (9-40), we find

[2] = = [m®] ™ [m™ ] [«"] (9-42)
Hence the coefficients of the irrotational functions F{ and G} are determined

once those for the solenoidal functions E? and H? are known. Substitution from
(9-41) and (9-42) in (9-40) gives

[1*¥][«"] = j[m*"][«"] (9-43)
[1**1[«"] = jeo[m*™ ] [="] (9-44)
where
[m*®] = [m*F] — [m*")[m" ]~ '[m"*] (9-45)
[m"] = [m™"] — [m"®)[m“]1~ ' [m®"] (9-46)

Finally, we can eliminate either [«”] or [«®] from (9-43) and (9-44) and obtain

=5 (0] = — (1] [0 (][] (047)

— (] = — [ O] "] (9-48)

Equations (9-47) and (9-48) are eigenvalue equations with eigenvalues 1/w? and
eigenvectors [«®] and [2"], respectively. Only one of (9-47) or (9-48) need be
solved, because if the [«®] are known the [«¥] may be found from (9-43) or (9-44),
or vice versa. Finally, the [«F] are given by (9-41) and the [a®] by (9-42).


Aaron
Rectangle


Sec. 9-3] Plasma-filled Rectangular Cavity 179

9-3. Plasma-filled Reciangular Cavity

The general solution is here specialized to the case of a rectangular cavity uni-
formly filled with gyrotropic plasma. This case was chosen because it approxi-
mates some experiments performed on plasmas [3]. The geometry for the prob-
lem is defined in Fig. 9-1. The cavity is uniformly filled with an ideal plasma, and

e
L8] ]

Figure 9.1. Plasma-filled rectangular cavity.

a uniform d-c magnetic field B, exists in the z-direction. The relative permittivity
tensor, in Cartesian coordinates, is then given by [4]

g, —jg; 0
[e] = [J'E: Ey ﬂ] (9-49)
0 0 &
where
o =1 _ (@pf@)[1 — (Jvlw)]
' [1 = (jvfw)]? — (w,/w)*
(wy]w)(wy/w) :
%= = (v — (@yo) G0
Ey=1— {m'j m}i
: = U?:er}]

Here w, = g/ Me/m, £ is the plasma frequency, w, = g,(By/m,) the cyclotron
I'r::qu:nn}r, n, the electron density, g, the charge of the electron, m, the mass of
the electron, and v, the electron collision frequency for momentum transfer. The
relative permeability of the medium is p = 1.
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The general solution simplifies for the case [¢] = tensor and u = 1. The H
mode vectors now form an orthonormal set with respect to weight function M,
and

HG _ o GH __
m; =my; =0

(9-51)
Hence the eigenvalue equation (9-47) becomes
1 o
— [o"] = [Q)[m")[«"] (9-52)
where
- 1)\2 .
@ o o
2
o (@) 0 -
1 2
oo ()
The magnetic field coefficients are found from (9-44) as
wﬂ
afl = —j—of (9-54)
L

From (9-42) we see that & = 0; that is, the magnetic field is solenoidal. The
coefficients of the irrotational part of the electric field are still given by (9-41).
For the dual case of a gyrotropic ferrite medium, & is a scalar and [u] a tensor,
and an analogous simplification of the general equations can be made.

Equation (9-52) involves only the electric field matrix [%°]. The normalized
electric mode vectors EJ for an empty rectangular cavity and the corresponding
electric irrotational mode vectors F{ are readily constructed by the method of
separation of variables. The evaluation of the matrix elements m5E, mEF, m[E,
and m/;" is straightforward, but involves considerable detail. The results are
tabulated in the Appendix of reference [5].

When the plasma is lossy (v, # 0) the elements of [£], as given by (9-49) and
(9-50), are complex, and so are the eigenvalues 1/w® of (9-52). It is convenient
to give the results in terms of the change in resonance Aw caused by the intro-
duction of a plasma into an empty cavity. Then the change in resonant frequency
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Aw and the change in quality factor @ are related to the complex w according
to [6].

t—‘z = Re ("" ;,,‘”u) (9-55)
n(é) =Im (z ”—;i-f”—n) (9-56)

where w? is the empty cavity resonant frequency. If the Q is large, say Q > 10,
it is equal to the usual quality factor defined on an energy basis, and is also the
reciprocal of the fractional frequency bandwidth between half-power points on
the resonance curve.

Most studies of plasmas in cavities have used a perturbation analysis [4].
The usual first-order perturbation formulas can be obtained from the general
solution by taking a one-or-more-term expansion for (9-11). For the plasma
case, take f = [E°, 0], where E° is the empty cavity mode to be perturbed, as the
only term in (9-11). Equation (9-52) then reduces to

o o

> = m' g0 E° + [£]E® dt (9-57)
Let [Ae] = [g] — [1], where [[] is the identity matrix. Then, since E° is normal-
ized according to (9-26), (9-57) becomes

= o (14 [[fco B - 1878° ) (9-58)

which can be rearranged to

If we now approximate @ by w® in all but the difference term, the usual per-
turbation formula

w — o

—— % = % [[feoE° - [AcTE® a1 (9-60)

is obtained. If the original empty-cavity mode is degenerate, then the expansion
(9-11) should contain all modes of the degeneracy. If [u] is perturbed as well as
Ly, e the. wmeegticanddy, mageetic Geld chauld he included in the expancion
(9-11). Note that the perturbation formulas derived in this way are also vari-
ational formulas, since the method of moments yields stationary results.
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9-4. Numerical RBesulis

For calculations the infinite-dimensional matrices were approximated by finite-
dimensional matrices, and the algorithm of Appendix C was used. The modes
in the plasma-filled cavity (Fig. 9-1) cannot be classified as TE or TM to z.
However, as the plasma density is reduced to zero the modes reduce to those of
the empty cavity, which can be classified as TE or TM to z. Hence the termin-
ology quasi TE or quasi TM is used to denote the modes, corresponding to their
empty-cavity designation. Numerical calculations have been made for the TE,, ,,
TE;0y; TMyy0, TE;;;, and TM,,, quasi modes of the rectangular cavity for
sides in the ratio b/a = 2.25 and c/a = 3. The results are presented in terms of
the fractional frequency shift and change in reciprocal Q, as defined by (9-55)
and (9-56). Similar results for first-order perturbation theory, equation (9-60),
are also given in a few cases for comparison.

The following considerations were used to select the modes to include in the
matrix solution:

I. In a plasma-filled waveguide, modes propagating parallel to a uniform
magnetic field possess reflection symmetry only in the axial direction. This
suggests that the z-coordinate dependence of the fields in the cavity of Fig. 9-1
should be the same as for the empty cavity. Since this particular example is
concerned only with modes either independent of z or having one-half cycle
sinusoidal variation with z, only the (m, n, 0) and (m, n, 1) modes were used for
most calculations. To check this postulate, the (m, n, 2) modes were included in
a few cases, with no change in the result.

2. In the low-plasma-density case, that is, when ©? < |0? — w}], one would
expect the largest term of the field expansion to be the corresponding empty-
cavity mode. It has been shown [7] by a perturbation analysis that the coefficients
of the expansion decrease rapidly as the empty-cavity resonant frequencies
become larger than that of the mode of interest. Hence, modes included in the
matrix solution were those having empty-cavity resonant frequencies less than
the mode of interest, plus a few having slightly greater resonant frequencies.
However, for large plasma densities, that is, w} > |o® — w]|, it was necessary
to include many more modes of higher resonant frequencies to obtain accurate
results.

3. The number of empty-cavity modes used in the matrix solution was limited
to 36 by the size of computer available, which was an IBM 7074. To determine
the rate of convergence of the solution the problem was first solved for 6 modes,
then 17, then 33, and then 36, chosen as shown in Table 9-1.

Some representative results are given as follows. Figure 9-2 shows the per-
centage frequency shift and the change in reciprocal Q vs. cyclotron frequency
w, (proportional to B,) for the dominant quasi TE,,, mode, plasma frequency
w, and collision frequency v, kept constant. Because of the relatively small
values of w, and v, the perturbational solution, shown dashed, is a good
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TABLE %-1
Solution

Modes (m, n, p) used

| Il I IV
x-variation m 0,1 0, 1,2 0,1,2,3 01,2
]‘-‘-"-I.'I'i.ﬂti.ﬂ]lﬂ' npl ﬂ| 1:: ﬂ,l,:.] ul ]:2
z-variation p 0,1 " | 0,1 01,2
Mo, of solenoidal modes 5 13 25 28
No. of irrotational modes 1 4 B B
Total no. of modes used [ 17 33 36

approximation to the matrix solution. Figure 9-3 shows the same situation for
the quasi TM,,, mode. Figure 9-4 shows the percentage frequency shift vs.
plasma frequency w, for the TE,,, mode for several values of w, and v_. Note
how the perturbation solution, curves (b), becomes poorer as @, increases, that
is, as the plasma becomes more dense. Figure 9-5 shows the A(1/Q) values for
the same cases. Figures 9-6 and 9-7 show Aw/w, and A(1/Q) vs. w, for the
TEg;; mode for several v, and fixed w,. Figures 9-8 and 9-9 show Aw/w, and
A(1/Q) vs. w, for the TE,,, mode for several v, and fixed w,. Additional
examples may be found in the original dissertation [7].

9-5. Discussien

The solution is general in that it applies to arbitrary cavity shapes and arbitrary
linear media. Use of the empty-cavity modes for the field expansion assumes that
they are known, although other field expansions may be used. The matrix solu-
tion reduces to the exact solution whenever it can be expressed as a finite number
of empty-cavity modes. The number of terms required in the field expansion for
good accuracy increases as € and p deviate more from the uniform scalar case.
In principle the solution can be carried to any degree of accuracy, although in
practice we are limited by the size of computer available.

In the theory it is assumed that & and pu are not functions of w, yet in practice
they often are. For example, in plasmas the elements of [¢] depend on w as shown
by (9-51). Since w is different for each mode, the matrix solution gives the modes
as they would exist if ¢ did not vary with w. This is equivalent to assuming that
the physical constants w,, w,, and v, differ from each mode such that the ratios
w,fw, wyfw, and v /w are constant. Hence the modes obtained from any one
solution of (9-53) do not exist simultaneously in a given plasma. However, by
solving the problem for a range of ratios w /o, w,/w, and v /w, we can deter-
mine the modes for given w,, w;, and v, by interpolation. Alternatively, we can
use a successive approximation (contraction mapping) approach to obtain the
solutions for a given plasma.
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Figure 9-2. Per cent frequency shift and change in 1/{} vs. eyclotron frequency for the quasi
TEqg11 mode, cup/ow = vpfew = 0.1. (a) Moment solution, (b) perturbation solution.
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Figure 9.3. Per cent frequency shift and change in 1/ va. cyclotron frequency for the
quasi TM;;; mode, w,/w = vjw = 0.1. (a) Moment solution, (i) perturbation solutien.


Aaron
Rectangle


185
0.025
0.9 )

Q.
R

Figure 9.4, Per cent frequency shift
and wp kept constant. (s) Moment "hﬂﬂ-m Tl:‘m“mq l"'ﬂ“hﬂm s

090

A(1/Q) > 1073

LE. ]
=

Figure 9-5. Change in g
va. plasma frequency for the
quasi TEgyy mode, v, and
wy kepl constant,



Aaron
Rectangle


188 Cavity Hesonators [Ch. 9
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Figure 9-6. Per cont frequency shift vs. cyelotron frequency for the quasi TEg;; meds,
wyp/w=0.1, v, kept constant.
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Figurs 9-7. Change in 1/Q vs. cyclotron frequency for the quasi TEq;) mode, wy/w = 0.1,
¥, kept constant.
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Figure 9-8. Per eemt frequency shiflt ve. plasma frequency for the quasi TEj;; mode,
wy/ew = 0.99, v, kept constant.
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Figure 9-9. Change in 1/ vs. plasma frequency for the quasi TE(); mode, wyfw = 0.99,
¥e kept constant.
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The following are some conclusions drawn from the calculations for gyro-
tropic plasmas in a rectangular cavity:
1. Many more empty cavity modes are needed to approximate the fields in
dense plasmas than in tenuous plasmas.
2. The perturbation solution gives good results for tenuous plasmas, except
in the vicinity of @, = w.
3. The gyrotropic plasma removes the degeneracy in the TE,,, and TM,,,
modes and probably removes all other degeneracies.
4. The TM,,,, modes are independent of the static magnetic field, i.e., of
@,. In this case the matrix solution reduces to an exact solution.
5. The Aw/w, and A(1/Q) are approximately equal for all TM modes con-
sidered.

The A(1/Q) of all modes (except TM,,,, modes) increases as w;, = ®.

. The magnitude of Aw/w, of all modes (except TM,,,, modes) reaches
peaks just above and below @ = w,. For TE modes the shift is positive
when w > w, and negative when @ < w,. The shift for TM modes is
always positive.

~ o
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Optimization

10-1. Hermiiian Forms
A matrix [4] is said to be Hermitian if its elements satisfy A,, = A . Let [4] be
an N by N Hermitian matrix and [a] an N-element column matrix. Then

H = [@*][A][«] (10-1)

is called a Hermitian quadratic form. It is easy to show that H = H*, and hence
H is real for all «. Furthermore, it can be shown that all eigenvalues of a Her-
mitian matrix are real [1,2].

In the case of functions, the quadratic functional

H={(f*Lf (10-2)

is also called a Hermitian form if H is real for all fin the domain of L. The corre-
sponding L is called a Hermitian operator. Again all eigenvalues of a Hermitian

operator are real. Suppose we approximate the function f by an N-term ex-
pansion

RN (10-3)
and substitute in (10-2). Then

H = [@n][lma] (2] (10-4)
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where
loa = {Joms L2} (10-5)

If L is a Hermitian operator, it follows that [/,,] is a Hermitian matrix. Hence
any functional Hermitian form can be approximated by a matrix Hermitian
form.

Example A. The power dissipated in a linear N-port network is a Hermitian
form involving the port currents or voltages. To show this, let [Z] represent the
impedance matrix of an N port, [[] the column matrix of the port currents, and
[V] the column matrix of the port voltages. Then the power dissipated in the
network is

P =Re[I*][V] = Re[I*][Z2][N]
=[I*I[HZ + Z")][1] (10-6)
If the network is reciprocal, then
[Re Z] = [¥(Z + Z2*)] (10-7)

is a matrix with elements Re Z_,. In the nonreciprocal case, (10-7) defines the
matrix [Re Z]. Now (10-6) can be written

P = [I*][Re Z][I] (10-8)

which is a Hermitian form. If the network is passive, P of (10-8) is never negative,
and [Re Z] is a positive semidefinite matrix. It is positive definite if the network
is lossy.

In terms of the port voltages, the power dissipated in an N-port network is

P =[P*][Re YI[V] (10-9)
where [¥] is the admittance matrix of the network and
[Re¥Y]=[¥Y + V)] (10-10)

The derivation of (10-9) is analogous to that for (10-8). Again [Re Y] is a positive
semidefinite matrix in general, and positive definite if the network is lossy.

Example B. The power radiated by sources of the scalar wave equation can
be expressed as a Hermitian form. To illustrate this, let { be a scalar field and p
its source. The field satisfies the Helmholtz equation

Vi + Ky = j—: p (10-11)
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where k = 2n/4 is the wavenumber. If the boundary condition is the radiation
condition at infinity, the well-known integral of (10-11) is

v="Lo=[fo :;:; dt (10-12)

where R is the distance from a source point to the field point. The power radi-
ated by the sources is known to be

P =Re ﬂ]p'ﬂr dr = Re {p*, > (10-13)

where the last equality defines the inner product. In terms of the operator
(10-12), the power radiated can be written

P = Re(p*, Lp) = }(<{p*, Lo} + <p, L'p*)) (10-14)
Now L and L* are self-adjoint, so the last term can be written {p*, L*p>. Hence
P = (p* (Re L)p) (10-15)

where (Re L) is the operator

sin kR
kR

(ReL)p =L+ L= [[[p dr (10-16)

Equation (10-15) is a Hermitian form, and, since the power radiated must be
positive, (Re L) is a positive definite operator.

10.2. Opiimization Proceduore

Systems can often be characterized by performance indices which are ratios of
quadratic forms. Examples are gain of an antenna, signal-to-noise ratio, quality
factor, efficiency, and so on. Let p be such a performance index,

[&*1[A][]
-t 10-1
P = @B .
where [A] and [B] are square Hermitian matrices and [2] is an unknown column
matrix. We desire to find the maximum wvalue of p and the matrix [a] which
corresponds to it.
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The maximization of (10-17) can be accomplished in the usual manner by
treating each element o; of [«] as a variable, and setting

dp

2a. E=ﬂ (10-18)

for all i. The reason for both conditions (10-18) is that the «; are in general com-
plex, and p must be maximized with respect to two parameters for each ;. To
show that (10-18) accomplishes this, let a; = Re(x;) and o = Im(x;), so that

o = o + joy
(10-19)
ot = o} — jo

We can show that (10-18) 1s equivalent to

op dp
£-0 ad L= 10-20
oa w == V)

as follows. By the chain rule of differentiation

dp Ep oo n dp Ouf
o,  Ow, 0o | Do’ Oa,

(10-21)
% _dpdn 3 oaf
do ~ Gty Oof  Oay ou]

The second partial derivatives of each term are readily evaluated from {ID-I'J}
and (10-21) reduces to

dp dp dp
dee; ﬂa;+ﬂm, =

(10-22)
E."p (ﬂp ﬂp) 0

— i ——
H'J'l'

fi do; Ot

It is now evident that (10-22) can be satisfied only if (10-18) are satisfied.
To apply (10-18), let (10-17) be written in the alternative form

N JEA at A o
o e e i 10-23
p JE*:H::!B.“ i l: }
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Application of the conditions (10-18) results in

2_lp T afdu—NT oty =0 (10-24)
i L g
dp 1T ]

for all i.“Nuw, assuming D # 0 (else p has no maximum), equation (10-25) can
be written

[A1[] = p[B][«] (10-26)

where we have replaced N/D by p. Equation (10-24) also reduces to (10-26)
because both [4] and [B] are Hermitian. Note that (10-26) is an eigenvalue equa-
tion with eigenvalue p. Hence the maximum value of p is the largest eigenvalue
of (10-26). This result is a well-known theorem in the theory of matrices [3)].

Example. Let Fig. 10-1 represent N generators with internal impedances Z,,
Z,, ..., Zy, connected to an N-port load network. It is desired to adjust the
generator currents [, f;, . . ., Iy to maximize the ratio of the power dissipated
in the load to that dissipated in the generators. Letting this ratio be denoted by
p, using (10-8) we have

| [f-][RE Zioaal[1]
P =P~ (IR Z,.301] (129

23
i
* load
i network
L]
L]

Figure 10-1. N generatlors feeding an [V-port network.
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Here [I] is the matrix of terminal currents, Z,.,, is the impedance matrix of the
load network, and Z_,, is that of the source. For the special case shown in Fig.
10-1, [Z,.,] is the diagonal matrix

Z, 0
0 Z
(Zed=| . 7 35
0 Z,
although the theory applies to arbitrary [Z,,,]. According to the theory of this
section, the maximum of p is given by the largest eigenvalue of the equation

[Re Z,g]0I] = p[Re Z,,,][I] (10-28)

and the excitation [/] for maximum p is given by the corresponding eigenvector.
This eigenvalue and eigenvector can be determined by the general algorithm of
Appendix C, or by special techniques for finding the maximum eigenvalue of a
matrix [3].

10-3. Anienna Gain

Consider an arbitrary antenna array with N input ports plus a distant * test ™
antenna, as represented by Fig. 10-2. We assume only one input port to the test
antenna, in which case it receives or transmits only one polarization. The array
plus the test antenna form an N 4 1 port network whose terminal charac-
teristics can be described by an N 4+ 1 by N + 1 matrix. Choosing the open-
circuit impedance matrix, we have

vl =z 23l (10-29)

Figurs 10-2, Antenna array and distant test antenna.
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where ¥, and I, are the terminal voltage and current at the test antenna, [V,] and
[I] are the voltage and current matrices at the array terminals

A 1,
I"'z -r_:
(va=| : =] : (10-30)
m | In

Z,, is the input impedance to the test antenna, [Z,] is the impedance matrix of
the antenna array

-zu zu zu.r-
Zy Z3; o Zyy

[Z.]= (10-31)

Zyy Zya o Zyn]

and [Z,.] and [Z_] are matrices of mutual impedances between the test antenna
and the array ports,

[zt-]= [?—'11 Zs - 2yl
[Z.]=1[2Z,, Z5 '+ Zn]

If the antennas and surrounding media are reciprocal, [Z,] = [Z,] and
[Z.] = [E.-]

Alternatively, we can choose the short-circuit admittance matrix to describe
the N + 1 port antenna system of Fig. 10-2. In this case, instead of (10-29) we
have

(10-32)

I, Y []‘i.]][ Ve ]
= 10-33
s =l o3l e
All the parameters of (10-33) have interpretations dual to those in the impedance
case, described previously.
Now let the array be excited by a set of current sources I,, I;, ..., Iy, and

the test antenna open-circuited, as represented by Fig. 10-3. The power
input is given by

'Fin o '}[I:][zu + z:]tfl] ““‘34]
as shown in Section 10-1. The test antenna is assumed to be distant from the

array and hence in the plane-wave far field of the array. Under polarization-
matched conditions, the square of the magnitude of the test antenna terminal
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+*
I rl K Array plus ':.r
‘!. test antenna H [
= netaork o

Figure 10-3. Excitation for array transmitting.

voltage is proportional to the radiation intensity of the incident field. From
(10-29), with I, = 0, we have

IViI? = 12,1517 = [I2)[220(Z,.(1.] (10-33)
Hence the radiation intensity in the direction of the test antenna is

Radiation intensity =% K, IVI?
=g K [2UZ2)(Z.0) (1036)

where K, is a constant related to the receiving aperture of the test antenna.
The power gain of an antenna is defined by

g 4n x Lrat_:'liatiun intensity (10-37)
power Input to the antenna

which is the ratio of the radiation intensity of the given antenna to that of an
omnidirectional antenna, both having the same power input. Substituting from
(10-34) and (10-36) in (10-37), we have

o IENZENZAL
¢=Kiimz. + 2200 S

This is the ratio of Hermitian forms, as discussed in Section 10-2. The dual
problem is to excite the array by a set of voltage sources V', V;, ..., Vy, and
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short-circuit the test antenna. Then formulas dual tn (10-34) and (10-36) apply,
and the power gain is given by

AR ALA

G=K; = r}
AP AMLA

(10-39)

The choice between (10-38) and (10-39) is one of convenience. We are used to
specifying dipole antenna inputs in terms of currents, but voltages are often
more convenient for aperture antennas.

The procedure for optimizing (10-38) is that of Section 10-2. The result is the
eigenvalue equation [4]

(Z21(2.]01,] = KE (Z,, + Z2(1.] (10-40)

where G/K, is the eigenvalue. From the properties of impedance matrices it
follows that [Z,, + Z*]is positive definite, and [Z*][Z,_] is positive semidefinite.
Hence all eigenvalues are zero or positive. Furthermore, since [Z%][Z,,] is a one-
term dyad, all eigenvalues are zero except one. The problem therefore reduces to
one of finding the only nonzero eigenvalue of (10-40) and the corresponding
eigenvector [I,). This result is a generalization of that obtained by Cheng and
Tseng [5].

The eigenvalues and eigenvectors can be found by standard techniques but,
for our problem, the following special technique applies. Let [/,] denote the
eigenfunction associated with the only nonzero eigenvalue of (10-40), and let
[/, [5] . .., [fy_,] denote any set of linearly independent vectors associated
with the eigenvalue G/K, = 0. Define tlre weighted scalar product

Ay =112, + ZL1[1,] (10-41)

From the theory of eigenvalue equations, eigenvectors associated with different
eigenvalues are orthogonal to each other, and hence

o 1) = U320 + 22211 =0 (10-42)

foralli=1,2, ..., N— 1. Now, it is particularly easy to find N — 1 inde-
pendent solutions to (10-40) with G/K, = 0 because of the special form of
[ZX)[Z,.). For example, the set

" 1z, D W
—-1/Z,, 0 0
=] ® (=] ~ Y% theid={ ¥ (10-43)
- 0 - - 0 . .._'I.lllzti'\r..
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where Z,, is the ith element of [Z, ], satisfies [Z_][/,] = 0, and hence are solutions
to (10-40) with the right side zero. Now, since [[,] must be orthogonal to all
(f ;] according to (10-42), we can construct the [f x] by the Schmidt orthogonaliza-
tion process [1,2]. A physical interpretation of this result is as follows. The [[] of
(10-43) are the array excitations which produce no field at the test antenna. The
excitation [f,], which produces maximum gain, is orthogonal to all those which
produce zero gain.

Alternatively, we can substitute for G/K,; from (10-38) in (10-40), cancel the
common term [Z,,])[[.], and obtain

[1310Z%]
[121(Z.. + Z2][1.]
The quotient term on the right side is just a complex number, which we shall

denote by 1/C. The required current distribution is obtained by inversion of
(10-44), which is

[3:13 - [E-u s 2 z:dj[fl] {]—M}

(L] =C[Z.. + 22.)7'[Z}] (10-45)

We can now substitute this result in (10-38) for the maximum gain, which re-
duces to

G = K\ [2,)[2,. + 2507 [22] (10-46)

The formulas of Bloch et al. [6] and of Tai [7] are specializations of (10-45) to
impressed sources in empty space.

The results for voltage excitation of an array are dual to those given above.
Hence, optimization of (10-39) gives

[F2I0Y, V] =§; [Y + T2V (10-47)

as the eigenvalue equation from which the excitation [V,] for maximum gain can
be found. The maximum gain must, of course, be the same for both current
excitation and voltage excitation, but the eigenvectors [[;] and [F,] will be differ-
ent. An explicit expression for the voltage excitation for maximum gain is

(V] = C[Y, + Y217 '[¥2] (10-48)

which is dual to (10-45). Finally, we can substitute this result in the gain formula
(10-39) and obtain

Gux = Ky[ ¥ I Yoe + 72172 (10-49)

for the maximum gain in terms of short-circuit parameters.
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Example. Consider an array of N point sources of a scalar field y, which satis-
fies the Helmholtz equation (10-11). Let I,, I, . . . , I, denote the complex excita-
tion of the sources and r,, ry, . . . , Fy the position vectors of the sources. Figure
10-4 illustrates the geometry of the array. The field from the array is given by
the superposition integral (10-12), where p consists of a sum of impulsive sources.
The result is the summation

N g romrl

i Yy (10-50)

where r; is the position vector to the field point. When r;; is much greater than
all r,, (10-50) reduces to the far-field expression

E-Jhﬂ N
Y I, eftracoeta (10-51)

—j' Fom=1

Y =

where £, is the angle between r, and r,, as shown in Fig. 10-4.
The power supplied by the sources is given by (10-15), which, for the case of
point sources, becomes

n-E- sin k|r, — r,|
- -Zl. -E]In 'fl kll'm 2 I'.l {1‘]—52}

The radiation intensity is defined as the distant power density per unit solid
angle. For the present problem, this is

; 1
Rad. int. = = lkrg y)? (10-53)

To distant
field point

Figure 10-4. Array of [¥ point sources.
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which, using (10-51), becomes

1| X 2
Rad. int. = % ¥, f.e-""""’""‘:“\

| n=j
1 N

3 I3 1, efiraso = rmcor ) (10-54)

- E m=] m=]
Now, substituting from (10-52) and (10-54) in the gain formula (10-37), we have

_ [*1C43n

¢ = MBI

(10-55)

Here [I] is the column matrix of the [,, [4] is a square matrix with elements
Apn = gi*(Fn €08 {n = Fm CO8 {m) [1{"-55}
and [B] is a square matrix with elements

B sink|r,—r,|
kr, =1,

(10-57)

In terms of the general theory, the elements (10-56) are those of [Z*][Z.] in
(10-38), and the elements (10-57) are the real parts of the impedance matrix
(10-31).

As discussed in the text, the maximum gain is the largest eigenvalue G of the
equation

[A1[1] = G[B][I] (10-58)

Because of the special form of [A], this eigenvalue is also the only nonzero one.
The corresponding eigenvector is given by (10-45), which for (10-58) becomes

[1.] = [B.) Y[ Heaenin] (10-59)

The right-hand matrix corresponds to [Z,.] in the general theory. Finally, we can
substitute (10-59) in (10-55), and obtain an explicit expression for maximum

gain,
I i)t Tl (10-60)

Here the first matrix is a row matrix, and the last one is a column matrix. Equa-
tion (10-60) corresponds to (10-46) in the general case.
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Figure 10.5. Maximum broadside gain for a 10-element linear array, compared to uniform
excitation (after Tad [T]).

Computations have been made for linear arrays with broadside maxima [7],
with endfire maxima [5,8], and for circular arrays [8). For the linear array with
uniform element separation d, Fig. 10-5 shows the variation in maximum broad-
side gain as d/4 changes. The gain for the same array with uniform excitation
and phase is shown dashed. Figure 10-6 shows the variation in maximum endfire
gain for the same array, with the case of uniform amplitude and progressive

— pptimum excitation
40 = uniform excitation,
_____ progressive phasing

Giain

d! N

Figure 10-6, Maximum endfire gain for a 10-clement lincar array, compared to uniform
excitation with progressive phasing (after Lo et al. [8]).
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phasing shown dashed. It can be shown that, as d/A — 0, the maximum gain for
an N element uniformly spaced linear array in the broadside case is [7]

2N

- N even
G N (10-61)
1 wead
T
while for the endfire case it is [B]
Gy = N2 (10-62)

However, as d becomes smaller than A4/2 we encounter a situation known as
supergain. In Figs. 10-5 and 10-6 the supergain region is that for d < /2, where
the dashed curves differ markedly from the maximum gain curves. The supergain
condition will be discussed in Sections 10-5 and 10-6. For now, let it suffice to say
that it is extremely difficult to make use of supergain antennas in practice,

10-4. Absorption Area

MNow consider the array of Fig. 10-2 to be receiving, and the distant test antenna
to be transmitting. The optimization problem in this case is that of loading the
array to extract maximum power from an incident plane wave. The parameter
of interest is the absorption area

power delivered to matched load

A 5 s
power density of incident wave

(10-63)

If the antenna or surrounding space contain nonreciprocal media, such as
ferrites or plasmas in a d-c magnetic field, the G and A are independent quanti-
ties. When all media are reciprocal and linear, and the same distribution network
is used for transmitting and receiving, we have the reciprocity relationship

G=1—§A (10-64)

This relationship applies to lossy antennas as well as to loss-free antennas.

For the analysis, consider the test antenna to be excited by a current source
I, and the array to be loaded by a network, as represented by Fig. 10-7. Using
[F,] as given by (10-29), we find the complex power to the load as

P= —[I210V.)
= —[I2(Z.]1, - 212,00 (10-65)
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| n L
b
— —4
Lo,
Load % mi.':i?. E}j
metwork . network :
:H' g
._T} i’

Figure 10-7. Array receiving and distant test antenna exeited.

The minus signs arise because the current reference directions are toward the
array. The power delivered to the load is the real part of (10-65), which reduces to

I
Pioaa = — 5' {LR10Z.] + [22000] + [2)(Z.. + 220041} (10-66)

The power density of the wave incident on the array is proportional to [[|2.
Hence

Incident power density = .E;E_! |2 (10-67)
3

where K, is a constant of the test antenna. It is convenient to define a relative
current matrix

(AREITA (10-68)

Now, using (10-66) to (10-68) in (10-63), we have

A = Ky {[2(Z.] + [22]00] + [31[ 2., + 22.]00,0} (10-69)

This expresses the absorption area of the antenna array as a function of its
terminal currents.

The dual problem is to express A as a function of its terminal voltages. For
this, we excite the test antenna by a voltage source V,, and formulas dual to
(10-65) to (10-69) apply. Hence, in terms of the relative voltages

[oa] =5 V] (1070
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the absorption area of the loaded antenna is
A = K {[v; Y] + [Y21v] + [wa [ Yee + Fallv.]) (10-71)

where K is a constant of the test antenna.
To optimize the absorption area, we take (10-69) and set

34 04
—=—=0 10-72
ai, o} (10-72)

forallj=1,2,..., N. The resultant equation is
[L]= = [Z. + 2517 '[Z.)1, (10-73)

where we have substituted for [i,] from (10-68). Equation (10-73) is equivalent
to applying the N-port maximum power transfer theorem to the active network
containing the array, the test antenna, and the source [,. This latter approach
was used by Bloch [9], whose results can be summarized as follows: Maximum
absorption area is obtained by a conjugate load, that is, when [Z;] = [Z2], and
for any other load having the same terminal voltage and current.

In terms of terminal voltages, the maximum absorption area can be obtained
from (10-71) by applying operations dual to (10-72). The result is

[Va] = —ilY. + Vi1 'YV (10-74)

Again, this is consistent with the N-port maximum power-transfer theorem of
network theory.

As long as all media are reciprocal, the numerical results for maximum A
are identical to those for maximum G. Hence the examples for maximum gain
of Section 10-3 serve also as examples for maximum absorption area.

10-5. Bandwidih and @

As mentioned in the example of Section 10-3, optimization of the gain of an
array of closely spaced elements results in what is known as a supergain antenna.
A bibliography of the literature of supergain antennas is given by Bloch et al.
[10]. 1t is known from theoretical studies that supergain antennas tend to be very
frequency-sensitive (high @), have high power losses on the antenna structure,
and require extreme precision of excitation [11]. In large antennas, these un-
desirable characteristics rapidly become dominant, and large supergain antennas
are usually considered impractical. However, significant improvement in the
directive characteristics of small antennas is possible, and small supergain
antennas have been constructed [6].

Since supergain antennas are frequency-sensitive, it is desirable to have a
measure of their frequency sensitivity before their construction. From energy
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considerations for an N-port network, the difference between the stored mag-
netic energy W, and the stored electric energy W, is given by [12)

1
Wo— W, = >—Im(P) (10-75)

where P is the complex power, given by (10-34), and w is the radian frequency.
Defining the matrix

[X]=1[Z, - 2}] (10-76)

which for reciprocal networks is the imaginary part of [Z,,], we can express
(10-75) as

W, — W, = {I2X][1.] (10-77)

For a loss-free network, we have the generalized form of Foster’s reactance
theorem [12]

I e [dX
W+ We=3 IIL][E][L] (10-78)

Now, the stored electric and magnetic energies can be obtained from (10-77)
and (10-78) as

1 i [dX X1
We = E[Lr] EE + E_ [Iﬂ]
(lﬂ—?g]
| [dX X
W= Un[ 5 - 3|

Although this result is exact only for loss-free networks, it is approximately
valid for high-Q networks in the vicinity of resonance.
We now define the Q of an array excited by [[] to be

20 W
g . P
in

(10-80)

where W = W, or W, whichever is larger, and P,, is the input power to the
array, given by (10-34), Substituting from (10-34) and (10-79), we have

0= [I¥[w(dX [dw) + X][1,]
(132, + Z3,](1,]

(10-81)

where the 4+ or — sign is chosen to give the higher Q. The term obtained from
[e0 d X/dw] is usually larger than that obtained from [X], and it becomes domin-
ant for supergain excitations.



206 Optimization [Ch. 10

If the Q is large, it is related to the frequency bandwidth of the array as fol-
lows. Consider the array to be resonated by a suitable reactance network at the
frequency of interest w,. Define the frequency bandwidth of the array in the
usual manner to be the fractional frequency increment between 0.707 points of

the normalized input |£|,

B= d_w (10-82)
oy
If the Q is high (say Q > 10), we have the relationship
1
Q= E (10-83)

If the Q is small, the array is potentially broadband.
For some applications, it might be desirable to maximize the gain bandwidth

product. From (10-38), (10-81), and (10-83), we have

[202200Z,]L]
' [I2][w(dX /dw) £ X][1,] (10-84)

Gp=K

which is again the ratio of Hermitian quadratic forms. Since energy cannot be
negative, the matrix [w dX/dw + X] is positive definite, and the maximization
proceeds as in Section 10-2. From the theoretical studies [11], it is to be expected
that frequency-sensitivity effects become dominant so rapidly that little improve-
ment of the gain-bandwidth product over that obtainable from normal arrays
can be expected.

For the dual case of voltage excitation, formulas dual to (10-75) to (10-84)
apply. In particular, if we define

[B] = §[Ya — Yai] (10-85)
then the Q of an array excited by terminal voltages [V,] is given by
(V2" [ex(dB/dw) + B][V,]
== i
¢ =Y. + 202 e

which is dual to (10-81). In the high-Q case, the Q’s from (10-81) and (10-86)
will be the same, but they may differ in the low-Q case. A formula dual to (10-84)
also applies for the gain-bandwidth product in terms of admittance parameters.

Computations of the Q of practical antennas are not available in the litera-
ture. An upper bound to the Q of antennas can be obtained by expanding the
field external to the antenna in terms of spherical modes, and curves of these
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results are available [11]. A different definition of Q was made by Lo et al. [8],
and computations were performed for some particular cases. This reference [8]
also considers the formulation of signal-to-noise ratio optimization, both with
and without a constraint on the Q.

10-8. Experimenial Gain Optimization

The parameters used in the optimization of antenna gain (Section 10-3) are
terminal impedances and admittances, and hence, in principle, can be measured
by circuit techniques. Procedures can be devised to systematically perform the
required measurements. Possible procedures for transmitting arrays, receiving
arrays, and reciprocal arrays are given in this section.

ANTENNA TRANSMITTING. For the impedance formulation, the array is
excited with known input currents, and open-circuit voltages are measured at all
ports. To be specific, we excite each port in turn with a known source /,,, obtain-
ing a set of array excitations

1, 0 KN
0 0
0 0 0
[i]l=]| . 1= .| -+ Usl=] . (10-87)
L0 0 1o

For each [/;], we measure the open-circuit voltages at all array ports, obtaining
the set of voltage matrices

rhl;Illrll- FF!I.- -Fh'l-
Viz Vaa V2

thhl=} tal=1 1] "% thd=] 1 (10-88)
LVin | Van _ Viw

where V;; denotes the voltage at port j due to I, at port i. Now, applying the
relationship [V,] = [Z.][1] to each [V] and []], we have

1
[Zln'] - :f: [F]]

[Z:,] =+ [V.] (10-89)

i
[z.'m] = Tu [FH.]
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where [Z,.] is the ith row of [Z,.]. From these measurements we can construct
the matrix [Z,, + Z%], which in the case of reciprocal media is twice the real
part of [Z,.].

We now apply a reference current /, to one element of the array, say port 1,
and excite each other port in turn such that no field is received by the test
antenna. This gives a set

1, s Bre
& 0 0

ta=|°| wa=|" flecii=} 2 (10-90)
L0 L0 i

which is equivalent to (10-43). The excitation which gives maximum gain must
be the only [1,] linearly independent of the [[;] and orthogonal to them according
to the weighted product (10-41). The excitation for maximum gain [/,] can, there-
fore, be obtained by the Schmidt process [1,2], or by solving the set of simul-
taneous equations (10-42).

An alternative method of determining the excitation for maximum gain is
to measure [£,,] and use (10-45). The ith element of [£,,] is the open-circuit volt-
age at the test antenna when the ith array port is excited by a unit current, all
other ports being open-circuited. This method is discussed further in the sub-
section on reciprocal arrays.

In terms of voltage excitation, the dual procedure is used. We excite the
elements in turn with a voltage V¥, and measure the short-circuit currents at all
ports. From this we can construct [¥,.]- The ports are then excited in pairs such
that no field is received by the test antenna. The voltage excitation for maximum
gain can then be obtained by requiring it to be orthogonal to all excitations
giving zero received field. Alternatively, we could measure the [¥,] and use
(10-48).

ANTENNA RECEIVING. For the receiving case, the test antenna is excited
and the array terminal currents adjusted according to (10-73). The [£,,] can, of
course, be determined by the same set of measurements as in the transmitting
case. However, since procedures which do not involve excitation of the array are
of interest, we shall give an alternative procedure.

Consider the test antenna excited by a current [,. The open-circuit voltages
measured at the array ports are then the elements of the matrix

[Va1 = [Z.]], (10-91)

which determines [£,]. We now short-circuit one array port, say the ith port,
and measure the short-circuit current I}. Let [V]] denote the corresponding
matrix of voltages at all array ports. By superposition, the voltage matrix
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[V} — V?] is precisely that which would be produced by a current source /* at
port i. This procedure can be repeated for each port, giving a set of excitations
equivalent to (10-87), except that I, is replaced by J;. Then, equivalent to (10-89),
we have

[Zid = ;{;[V:— Vo]

1
[‘Eil = F [F': o F.n]
A (10-92)

1
[Zya] = 7 L= Vol
N

which determines [£,,]. The receiving current distribution for maximum absorp-
tion area is then found by substitution from (10-91) and (10-92) in (10-73).

For the determination of port voltages, the forementioned procedure applies
in a dual sense. In this case we excite the test antenna with a voltage V,, short-
circuit all array ports, and measure the port currents. We then open-circuit one
port at a time, measure its open-circuit voltage and the corresponding short-
circuit currents at all other ports, and determine [Y,] dual to (10-92). The port
voltages for maximum absorption area are then calculated from (10-74).

If we wish to design a network to deliver the received power to a single load,
we can use Bloch's procedure [9], modified as follows. Instead of using the field
at each element, we must use the open-circuit voltage obtained at each element
when the array is excited by the plane-wave field. With this correction, Bloch's
derivation of a network for maximum absorption area becomes applicable to
actual arrays.

RECIPROCAL ARRAYS. When the array and surrounding space contain
only reciprocal media, the impedance and admittance matrices are symmetrical,
and

[Zoa + Z2] = 2[Re Z,,] (10-93)

This can be used to simplify measurement of Z,, to some extent. Also, because
of reciprocity,

(2 = [Z,] = 7 [V] (10-94

I

where [V'7] is the matrix of open-circuit array voltages defined by (10-91). Letting
2C = I,, we have from (10-45) and (10-93),

(L] =[Re Z, 17 '[}2"] (10-95)
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Experimentally [V'7] is determined by open-circuiting all array ports, illuminating
the array by a plane wave from the test antenna, and measuring the port vultaga?.
For the case of point sources in empty space (10-95) corresponds to Bloch's
traveling-wave theorem [6].

FI::E maximum absorption area on receiving, we have from (10-73), (10-93),
and (10-94),

(1] = —3[Re 2,17 ' [V} (10-96)

Comparing this with (10-95), we see that the terminal currents fu:_' maximum{'l
are proportional to the conjugate of the terminal currents ﬁ:n_' maximum G. This
result can also be obtained from the reciprocity theorem applied to the array and
test antenna network. o | 1
For the admittance formulation, the voltage excitation for maximum gain

of a reciprocal transmitting antenna is
[V,] = [Re Y7 '[2*] (10-97)

which is dual to (10-95). Experimentally, the [1%] is found by short-circuiting all
array ports, illuminating the array by a plane wave from the test antenna, and
measuring the port currents. For a reciprocal receiving antenna, the maximum
absorption area is obtained when

[V.]= —3[Re Y,.]7'[I] (10-98)

which is dual to (10-96). Hence the terminal voltages for maximum gain are
proportional to the conjugate of those for maximum absorption area.

The crudest approximation used in array design is to neglect all mutual
effects among array elements. In terms of (10-95), this is equivalent to assuming
that [Z_] is a diagonal matrix with elements equal to the input impedances of
isolated antenna elements, and that [F7] is the matrix of voltages received by
isolated elements. To this approximation (10-95) states that each element should
be phased so that it contributes in phase to the main beam and is weighted in
amplitude in proportion to its voltage pattern divided by its input resistance,
For purposes of discussion, we shall call this normal excitation of an array. In
the case of identical elements (identical input resistances and patterns), normal
excitation is the usual uniform cophasal excitation.

A better approximation for maximizing gain can be obtained by simply
neglecting all off-diagonal terms of [Re Z,] in (10-95). This is equivalent to
measuring the input impedance to each element, and the voltage received by
each element, with all other elements present, but with their terminals open-
circuited. It is interesting to note that the approximate current excitation ob-
tained from (10-95) is not necessarily equal to the corresponding voltage approxi-
mation obtainable from (10-95). Note also that one no longer has an array of
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identical elements even if the geometries of all elements are the same, because
each element is in a different environment formed by the other elements.

Increasing the gain of an array over that obtained by normal excitation evi-
dently depends upon the mutual effects among elements. If the off-diagonal
terms of [Re Z_] are small compared to the diagonal terms, we can expect anly
small improvements in the gain over normal gain. Such is usually the case when
elements are widely spaced, say more than a half wavelength between elements.
If the off-diagonal elements of [Re Z,] are comparable in magnitude to the
diagonal elements, considerable supergain effects can be obtained. Physically,
this usually implies closely spaced elements. Hence, to design a supergain
antenna, we consider (or construct) an array of closely spaced elements and
calculate (or measure) its terminal impedance or admittance matrices. The ex-
citation for maximum gain and the approximate @ of the antenna can then
be determined from the formulas of this chapter. The resultant array will prob-
ably be a supergain array exhibiting the usual high Q and requiring precision
excitation.

It is of interest to have some idea of how much supergaining is practicable
to attempt. From previous studies on loss-free antennas [11], it has been found
that, for large antennas, optimization techniques can give very little improve-
ment over normal excitation. For arrays about two wavelengths in total length,
it appears that the gain might be doubled by supergain techniques. For smaller
arrays, even more improvement appears possible. Hence, although such tech-
niques do not appear attractive for large arrays, they do become useful for
small ones.

The procedures of this section are applicable to any antenna which has
several input terminals; discrete elements do not have to be identifiable. For
example, an aperture antenna fed in several places, or by several modes in a
waveguide, can be optimized by these techniques. All measurements (or calcula-
tions) must, of course, be made with the ports open-circuited for the impedance
formulation, or short-circuited for the admittance formulation. It might also be
possible to use similar techniques to investigate changes in the structure of an
antenna, by viewing the addition {{f a conductor as short-circuiting a port, or the
removal of a conductor as open-circuiting a port.
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