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Finite element method

The finite element method (FEM) is the most widely used method for solving problems of engineering and
mathematical models. Typical problem areas of interest include the traditional fields of structural analysis,
heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a particular numerical
method for solving partial differential equations in two or three space variables (i.e., some boundary value
problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called
finite elements. This is achieved by a particular space discretisation in the space dimensions, which is
implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a
finite number of points. The finite element method formulation of a boundary value problem finally results
in a system of algebraic equations. The method approximates the unknown function over the domain.[!] The
simple equations that model these finite elements are then assembled into a larger system of equations that
models the entire problem. The FEM then uses variational methods from the calculus of variations to
approximate a solution by minimizing an associated error function.

Studying or analyzing a phenomenon with FEM is often referred to as finite element analysis (FEA).
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Basic concepts

The subdivision of a whole domain into simpler parts has several advantages:[2!

= Accurate representation of complex geometry
= Inclusion of dissimilar material properties

= Easy representation of the total solution

= Capture of local effects.

A typical work out of the method involves (1) dividing the domain of the problem into a collection of
subdomains, with each subdomain represented by a set of element equations to the original problem,
followed by (2) systematically recombining all sets of element equations into a global system of equations for
the final calculation. The global system of equations has known solution techniques, and can be calculated
from the initial values of the original problem to obtain a numerical answer.

In the first step above, the element equations are simple equations that locally approximate the original
complex equations to be studied, where the original equations are often partial differential equations (PDE).
To explain the approximation in this process, FEM is commonly introduced as a special case of Galerkin
method. The process, in mathematical language, is to construct an integral of the inner product of the
residual and the weight functions and set the integral to zero. In simple terms, it is a procedure that
minimizes the error of approximation by fitting trial functions into the PDE. The residual is the error caused
by the trial functions, and the weight functions are polynomial approximation functions that project the
residual. The process eliminates all the spatial derivatives from the PDE, thus approximating the PDE locally
with

= a set of algebraic equations for steady state problems,
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= a set of ordinary differential equations for transient problems.

These equation sets are the element equations. They are linear if the underlying PDE is linear, and vice versa.
Algebraic equation sets that arise in the steady state problems are solved using numerical linear algebra
methods, while ordinary differential equation sets that arise in the transient problems are solved by
numerical integration using standard techniques such as Euler's method or the Runge-Kutta method.

In step (2) above, a global system of equations is generated from the element equations through a
transformation of coordinates from the subdomains' local nodes to the domain's global nodes. This spatial
transformation includes appropriate orientation adjustments as applied in relation to the reference
coordinate system. The process is often carried out by FEM software using coordinate data generated from
the subdomains.

FEM is best understood from its practical application, known as finite element analysis (FEA). FEA as
applied in engineering is a computational tool for performing engineering analysis. It includes the use of
mesh generation techniques for dividing a complex problem into small elements, as well as the use of
software program coded with FEM algorithm. In applying FEA, the complex problem is usually a physical
system with the underlying physics such as the Euler-Bernoulli beam equation, the heat equation, or the
Navier-Stokes equations expressed in either PDE or integral equations, while the divided small elements of
the complex problem represent different areas in the physical system.

FEA is a good choice for analyzing problems over complicated domains (like cars and oil pipelines), when
the domain changes (as during a solid state reaction with a moving boundary), when the desired precision
varies over the entire domain, or when the solution lacks smoothness. FEA simulations provide a valuable
resource as they remove multiple instances of creation and testing of hard prototypes for various high
fidelity situations.[3] For instance, in a frontal crash simulation it is possible to increase prediction accuracy
in "important” areas like the front of the car and reduce it in its rear (thus reducing cost of the simulation).
Another example would be in numerical weather prediction, where it is more important to have accurate
predictions over developing highly nonlinear phenomena (such as tropical cyclones in the atmosphere, or
eddies in the ocean) rather than relatively calm areas.

History

While it is difficult to quote a date of the invention of the finite element method, the method originated from
the need to solve complex elasticity and structural analysis problems in civil and aeronautical engineering.
Its development can be traced back to the work by A. Hrennikoffl*! and R. Courant[®! in the early 1940s.
Another pioneer was Ioannis Argyris. In the USSR, the introduction of the practical application of the
method is usually connected with name of Leonard Oganesyan.[®] In China, in the later 1950s and early
1960s, based on the computations of dam constructions, K. Feng proposed a systematic numerical method for
solving partial differential equations. The method was called the finite difference method based on variation
principle, which was another independent invention of the finite element method. Although the approaches
used by these pioneers are different, they share one essential characteristic: mesh discretization of a
continuous domain into a set of discrete sub-domains, usually called elements.

Hrennikoff's work discretizes the domain by using a lattice analogy, while Courant's approach divides the
domain into finite triangular subregions to solve second order elliptic partial differential equations (PDEs)
that arise from the problem of torsion of a cylinder. Courant's contribution was evolutionary, drawing on a
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FEM mesh created by an analyst prior to
finding a solution to a magnetic problem
using FEM software. Colours indicate that
the analyst has set material properties for
each zone, in this case a conducting wire
coil in orange; a ferromagnetic component
(perhaps iron) in light blue; and air in grey.
Although the geometry may seem simple, it
would be very challenging to calculate the
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FEM solution to the problem at left,
involving a cylindrically shaped magnetic
shield. The ferromagnetic cylindrical part is
shielding the area inside the cylinder by
diverting the magnetic field created by the
coil (rectangular area on the right). The
color represents the amplitude of the
magnetic flux density, as indicated by the
scale in the inset legend, red being high

magnetic field for this setup without FEM
software, using equations alone.

amplitude. The area inside the cylinder is
low amplitude (dark blue, with widely
spaced lines of magnetic flux), which
suggests that the shield is performing as it
was designed to.

The finite element method obtained its real impetus in the 1960s and 1970s by the developments of J. H.
Argyris with co-workers at the University of Stuttgart, R. W. Clough with co-workers at UC Berkeley, O. C.

Zienkiewicz with co-workers Ernest Hinton, Bruce Irons!”) and others at Swansea University, Philippe G.

Ciarlet at the University of Paris 6 and Richard Gallagher with co-workers at Cornell University. Further

impetus was provided in these years by available open source finite element software programs. NASA
sponsored the original version of NASTRAN, and UC Berkeley made the finite element program SAP visl
widely available. In Norway the ship classification society Det Norske Veritas (now DNV GL) developed
Sesam in 1969 for use in analysis of ships.[?] A rigorous mathematical basis to the finite element method was

provided in 1973 with the publication by Strang and @_[10] The method has since been generalized for the

numerical modeling of physical systems in a wide variety of engineering disciplines, e.g., electromagnetism,
11][12]

heat transfer, and fluid dynamics.!

Technical discussion

The structure of finite element methods

A finite element method is characterized by a variational formulation, a discretization strategy, one or more
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solution algorithms and post-processing procedures.

Examples of variational formulation are the Galerkin method, the discontinuous Galerkin method, mixed
methods, etc.

A discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the creation
of finite element meshes, (b) the definition of basis function on reference elements (also called shape
functions) and (c) the mapping of reference elements onto the elements of the mesh. Examples of
discretization strategies are the h-version, p-version, hp-version, x-FEM, isogeometric analysis, etc. Each
discretization strategy has certain advantages and disadvantages. A reasonable criterion in selecting a
discretization strategy is to realize nearly optimal performance for the broadest set of mathematical models
in a particular model class.

There are various numerical solution algorithms that can be classified into two broad categories; direct and
iterative solvers. These algorithms are designed to exploit the sparsity of matrices that depend on the choices
of variational formulation and discretization strategy.

Postprocessing procedures are designed for the extraction of the data of interest from a finite element
solution. In order to meet the requirements of solution verification, postprocessors need to provide for a
posteriori error estimation in terms of the quantities of interest. When the errors of approximation are larger
than what is considered acceptable then the discretization has to be changed either by an automated
adaptive process or by action of the analyst. There are some very efficient postprocessors that provide for the
realization of superconvergence.

Illustrative problems P1 and P2

We will demonstrate the finite element method using two sample problems from which the general method
can be extrapolated. It is assumed that the reader is familiar with calculus and linear algebra.

P1is a one-dimensional problem

" (z) = f(z) in (0,1),
o {u(O) = u(1) =0,

where f is given, u is an unknown function of &, and u” is the second derivative of u with respect to .

P2 is a two-dimensional problem (Dirichlet problem)

P2 - Ugq: (way) + uyy(w,y) = f(w’ y) in Q,
"lu=0 on 092,

where () is a connected open region in the (z,y) plane whose boundary 02 is nice (e.g., a smooth manifold
or a polygon), and Uz and uy, denote the second derivatives with respect to & and y, respectively.

The problem P1 can be solved directly by computing antiderivatives. However, this method of solving the
boundary value problem (BVP) works only when there is one spatial dimension and does not generalize to
higher-dimensional problems or to problems like u + 4" = f. For this reason, we will develop the finite
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element method for P1 and outline its generalization to P2.

Our explanation will proceed in two steps, which mirror two essential steps one must take to solve a
boundary value problem (BVP) using the FEM.

= In the first step, one rephrases the original BVP in its weak form. Little to no
computation is usually required for this step. The transformation is done by hand on
paper.

» The second step is the discretization, where the weak form is discretized in a finite-
dimensional space.

After this second step, we have concrete formulae for a large but finite-dimensional linear problem whose
solution will approximately solve the original BVP. This finite-dimensional problem is then implemented on
a computer.

Weak formulation

The first step is to convert P1 and P2 into their equivalent weak formulations.

The weak form of P1

If u solves P1, then for any smooth function v that satisfies the displacement boundary conditions, i.e. v =0
atz =0and £z =1, we have

1 1
(1)/(; f(w)v(a:)da:z/o u (z)v(z) dz.

Conversely, if u with u(0) = u(1) = 0 satisfies (1) for every smooth function v(z) then one may show that
this u will solve P1. The proof is easier for twice continuously differentiable w (mean value theorem), but
may be proved in a distributional sense as well.

We define a new operator or map ¢(u,v) by using integration by parts on the right-hand-side of (1):

1 1
/0 f(w)’U(iB)d.'I:=/0 u (:z:)v(:::')dar:1
=d (2@} - | ¥ (z)(z)dz
® vl - [ v e
1
= —/(; o (z)V (z) dz = —p(u,v),

where we have used the assumption that v(0) = v(1) = 0.

The weak form of P2

If we integrate by parts using a form of Green's identities, we see that if u solves P2, then we may define
&(u, v) for any v by
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/Qf'vds:—/QVu-V'vdsz—d)(u,v),

where V denotes the gradient and - denotes the dot product in the two-dimensional plane. Once more ¢ can
be turned into an inner product on a suitable space H& () of once differentiable functions of 2 that are zero
on 0. We have also assumed that v € Hg () (see Sobolev spaces). Existence and uniqueness of the

solution can also be shown.

A proof outline of existence and uniqueness of the solution
We can loosely think of Hj (0, 1) to be the absolutely continuous functions of (0, 1) that are 0 at = 0 and

x =1 (see Sobolev spaces). Such functions are (weakly) once differentiable and it turns out that the
symmetric bilinear map ¢ then defines an inner product which turns H(} (0,1) into a Hilbert space (a

1
detailed proof is nontrivial). On the other hand, the left-hand-side / f(z)v(z)dz is also an inner product,
0

this time on the Lp space L? (0,1). An application of the Riesz representation theorem for Hilbert spaces
shows that there is a unique w solving (2) and therefore P1. This solution is a-priori only a member of
H}(0,1), but using elliptic regularity, will be smooth if f is.

Discretization

P1 and P2 are ready to be discretized which leads to a common
sub-problem (3). The basic idea is to replace the infinite-dimensional
linear problem:

Find v € H} such that S
Vo€ B, ~ou) = [ fo | /i i PPN

x0=0 X, X, Xy X, x5=1

with a finite-dimensional version: A function in H}, with zero
values at the endpoints (blue),
(3) Find w € V such that and a piecewise linear
Yo eV, —¢(u, 'v) _ /fv approximation (red)

where V is a finite-dimensional subspace of H&. There are many possible choices for V (one possibility leads

to the spectral method). However, for the finite element method we take V to be a space of piecewise
polynomial functions.

For problem P1
We take the interval (0,1), choose 7 values of z with 0 =29 < 21 < -+ < Zp < Tpy1 =1 and we define
V by:

V={v:[0,1] = R : vis continuous, v| ] is linear for k = 0, ..., n, and v(0) = v(1) = 0}

Tk T+
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where we define g = 0 and z,,; = 1. Observe that functions in V are not differentiable according to the
elementary definition of calculus. Indeed, if v € V' then the derivative is typically not defined at any * = z,
k=1,...,n. However, the derivative exists at every other value of & and one can use this derivative for the
purpose of integration by parts.

For problem P2

We need V to be a set of functions of (2. In the figure on the right, we
have illustrated a triangulation of a 15 sided polygonal region {2 in
the plane (below), and a piecewise linear function (above, in color) of

this polygon which is linear on each triangle of the triangulation; the
space V would consist of functions that are linear on each triangle of
the chosen triangulation.

One hopes that as the underlying triangular mesh becomes finer and

finer, the solution of the discrete problem (3) will in some sense
converge to the solution of the original boundary value problem P2. A piecewise linear function in

To measure this mesh fineness, the triangulation is indexed by a real two dimensions

valued parameter h >0 which one takes to be very small. This

parameter will be related to the size of the largest or average triangle

in the triangulation. As we refine the triangulation, the space of piecewise linear functions V' must also
change with h. For this reason, one often reads V}, instead of V' in the literature. Since we do not perform
such an analysis, we will not use this notation.

Choosing a basis

To complete the discretization, we must select a basis of V. In the one-dimensional case, for each control
point z; we will choose the piecewise linear function v in V' whose value is 1 at z; and zero at every

wj, ] 7é k, i.e.,
T—Tp—1 .
m ifx € [lBk_l, xk],
v(x) = Tk+1 =% .
k() rr=— if ¢ € [zk, Tri1],
0 otherwise,
for k=1,...,n; this basis is a shifted and scaled tent function. For the two-dimensional case, we choose

again one basis function vy, per vertex xj of the triangulation of the planar region (2. The function vy, is the
unique function of V' whose value is 1 at , and zero at every x;, j # k.

Depending on the author, the word "element” in "finite element method" refers either to the triangles in the
domain, the piecewise linear basis function, or both. So for instance, an author interested in curved domains
might replace the triangles with curved primitives, and so might describe the elements as being curvilinear.
On the other hand, some authors replace "piecewise linear" by "piecewise quadratic" or even "piecewise
polynomial”. The author might then say "higher order element" instead of "higher degree polynomial". Finite
element method is not restricted to triangles (or tetrahedra in 3-d, or higher order simplexes in
multidimensional spaces), but can be defined on quadrilateral subdomains (hexahedra, prisms, or pyramids
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in 3-d, and so on). Higher order shapes (curvilinear elements) can be .
Interpolation of a Bessel

function

circle). ™

defined with polynomial and even non-polynomial shapes (e.g. ellipse or

Examples of methods that use higher degree piecewise polynomial basis
functions are the hp-FEM and spectral FEM.

More advanced implementations (adaptive finite element methods)

utilize a method to assess the quality of the results (based on error T
16 scaled and shifted

triangular basis functions
(colors) used to reconstruct

estimation theory) and modify the mesh during the solution aiming to
achieve approximate solution within some bounds from the exact

solution of the continuum problem. Mesh adaptivity may utilize various a zeroeth order Bessel
techniques, the most popular are: function J, (black).
= moving nodes (r-adaptivity) 1
= refining (and unrefining) elements (h-adaptivity) | "»‘
= changing order of base functions (p-adaptivity) - '\.‘ /
= combinations of the above (hp-adaptivity). N/

The linear combination of
basis functions (yellow)
The primary advantage of this choice of basis is that the inner products reproduces Jo (blue) to any
desired accuracy.

Small support of the basis

1
('vj,vk>=/ Vv, dT
0

and

1
¢(vj,vk)=/ v}v}c dx
0

will be zero for almost all j, k. (The matrix containing (v;,vx) in the
(4, k) location is known as the Gramian matrix.) In the one
dimensional case, the support of vy is the interval [zg_1,Zki1].
Hence, the integrands of (v;,v;) and @(vj,vy) are identically zero
whenever |j — k| > 1.

Solving the two-dimensional

Similarly, in the planar case, if ; and 3 do not share an edge of the problem us; +uyy, = —4 in the
disk centered at the origin and

triangulation, then the integrals ) .
& & radius 1, with zero boundary

conditions.
/ Vv, ds (a) The triangulation.
Q
and

/ V’Uj . Vvk ds
Q
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are both zero.

Matrix form of the problem

If we write u(x) :Zukvk(m) and f(z) :ka'uk(w) then
k=1 k=1

problem (3), taking v(z) = v;() for j =1,...,n, becomes

— Zuk¢(vk,vj) = ka /vkvjda: for j=1,...,n. (4)
k=1 k=1

-l'°.| " N . . .
If we denote by u and f the column vectors (ui,...,u,)" and  (P)The sparse matrix L of the
(f1, e fn)t, and if we let discretized linear system
L = (Ly)
1
and
0.5
M = (M;;)
1]
be matrices whose entries are 1 —~
Lij = ¢(vi, vj)
(c) The computed solution,
and u(z,y) =1 —a? — 42

M;; = /vivjdw

then we may rephrase (4) as

—Lu = Mf. (5)

n
It is not necessary to assume f(z)= Z frvr(x). For a general function f(z), problem (3) with
k=1
v(z) = v;(z) for j =1,...,n becomes actually simpler, since no matrix M is used,

—Lu =D, (6)

where b = (by,...,by,)" and b; = /f'vjdw forj=1,...,n.

As we have discussed before, most of the entries of L and M are zero because the basis functions v have
small support. So we now have to solve a linear system in the unknown u where most of the entries of the
matrix L, which we need to invert, are zero.

Such matrices are known as sparse matrices, and there are efficient solvers for such problems (much more
efficient than actually inverting the matrix.) In addition, L is symmetric and positive definite, so a technique
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such as the conjugate gradient method is favored. For problems that are not too large, sparse LU
decompositions and Cholesky decompositions still work well. For instance, MATLAB's backslash operator
(which uses sparse LU, sparse Cholesky, and other factorization methods) can be sufficient for meshes with a
hundred thousand vertices.

The matrix L is usually referred to as the stiffness matrix, while the matrix M is dubbed the mass matrix.

General form of the finite element method

In general, the finite element method is characterized by the following process.

= One chooses a grid for Q. In the preceding treatment, the grid consisted of triangles,
but one can also use squares or curvilinear polygons.

= Then, one chooses basis functions. In our discussion, we used piecewise linear basis
functions, but it is also common to use piecewise polynomial basis functions.
A separate consideration is the smoothness of the basis functions. For second order elliptic boundary value
problems, piecewise polynomial basis function that are merely continuous suffice (i.e., the derivatives are
discontinuous.) For higher order partial differential equations, one must use smoother basis functions. For
instance, for a fourth order problem such as Ugggg + Uyyy = f, one may use piecewise quadratic basis

functions that are C*.

Another consideration is the relation of the finite-dimensional space V' to its infinite-dimensional
counterpart, in the examples above H&. A conforming element method is one in which the space V is a
subspace of the element space for the continuous problem. The example above is such a method. If this
condition is not satisfied, we obtain a nonconforming element method, an example of which is the space of
piecewise linear functions over the mesh which are continuous at each edge midpoint. Since these functions
are in general discontinuous along the edges, this finite-dimensional space is not a subspace of the original

H.

Typically, one has an algorithm for taking a given mesh and subdividing it. If the main method for increasing
precision is to subdivide the mesh, one has an h-method (A is customarily the diameter of the largest element
in the mesh.) In this manner, if one shows that the error with a grid h is bounded above by Ch?, for some
C < 00 and p > 0, then one has an order p method. Under certain hypotheses (for instance, if the domain is
convex), a piecewise polynomial of order d method will have an error of order p =d + 1.

If instead of making h smaller, one increases the degree of the polynomials used in the basis function, one
has a p-method. If one combines these two refinement types, one obtains an hp-method (hp-FEM). In the
hp-FEM, the polynomial degrees can vary from element to element. High order methods with large uniform
p are called spectral finite element methods (SFEM). These are not to be confused with spectral methods.

For vector partial differential equations, the basis functions may take values in R™.

Various types of finite element methods

AEM

11 of 18 01/21/2020 10:37 AM



Finite element method - Wikipedia https://en.wikipedia.org/wiki/Finite element method

The Applied Element Method, or AEM combines features of both FEM and Discrete element method, or
(DEM).

Generalized finite element method

The generalized finite element method (GFEM) uses local spaces consisting of functions, not necessarily
polynomials, that reflect the available information on the unknown solution and thus ensure good local
approximation. Then a partition of unity is used to “bond” these spaces together to form the approximating
subspace. The effectiveness of GFEM has been shown when applied to problems with domains having
complicated boundaries, problems with micro-scales, and problems with boundary layers.[1?]

Mixed finite element method

The mixed finite element method is a type of finite element method in which extra independent variables are
introduced as nodal variables during the discretization of a partial differential equation problem.

Variable - polynomial

The hp-FEM combines adaptively, elements with variable size h and polynomial degree p in order to achieve

exceptionally fast, exponential convergence rates.!14]

hpk-FEM

The hpk-FEM combines adaptively, elements with variable size h, polynomial degree of the local
approximations p and global differentiability of the local approximations (k-1) in order to achieve best
convergence rates.

XFEM

The extended finite element method (XFEM) is a numerical technique based on the generalized finite element
method (GFEM) and the partition of unity method (PUM). It extends the classical finite element method by
enriching the solution space for solutions to differential equations with discontinuous functions. Extended
finite element methods enrich the approximation space so that it is able to naturally reproduce the
challenging feature associated with the problem of interest: the discontinuity, singularity, boundary layer,
etc. It was shown that for some problems, such an embedding of the problem's feature into the
approximation space can significantly improve convergence rates and accuracy. Moreover, treating problems
with discontinuities with XFEMs suppresses the need to mesh and remesh the discontinuity surfaces, thus
alleviating the computational costs and projection errors associated with conventional finite element
methods, at the cost of restricting the discontinuities to mesh edges.

Several research codes implement this technique to various degrees: 1. GetFEM++ 2. xfem++ 3. openxfem+-+

XFEM has also been implemented in codes like Altair Radioss, ASTER, Morfeo and Abaqus. It is increasingly
being adopted by other commercial finite element software, with a few plugins and actual core
implementations available (ANSYS, SAMCEF, OOFELIE, etc.).
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Scaled boundary finite element method (SBFEM)

The introduction of the scaled boundary finite element method (SBFEM) came from Song and Wolf (1997).[15]
The SBFEM has been one of the most profitable contributions in the area of numerical analysis of fracture
mechanics problems. It is a semi-analytical fundamental-solutionless method which combines the
advantages of both the finite element formulations and procedures, and the boundary element discretization.
However, unlike the boundary element method, no fundamental differential solution is required.

S-FEM

The S-FEM, Smoothed Finite Element Methods, are a particular class of numerical simulation algorithms for
the simulation of physical phenomena. It was developed by combining meshfree methods with the finite
element method.

Spectral element method

Spectral element methods combine the geometric flexibility of finite elements and the acute accuracy of

spectral methods. Spectral methods are the approximate solution of weak form partial equations that are

based on high-order Lagragian interpolants and used only with certain quadrature rules.[1¢]

Meshfree methods
Discontinuous Galerkin methods
Finite element limit analysis
Stretched grid method

Loubignac iteration

Loubignac iteration is an iterative method in finite element methods.

Link with the gradient discretisation method

Some types of finite element methods (conforming, nonconforming, mixed finite element methods) are
particular cases of the gradient discretisation method (GDM). Hence the convergence properties of the GDM,
which are established for a series of problems (linear and non linear elliptic problems, linear, nonlinear and
degenerate parabolic problems), hold as well for these particular finite element methods.

Comparison to the finite difference method

The finite difference method (FDM) is an alternative way of approximating solutions of PDEs. The differences
between FEM and FDM are:
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= The most attractive feature of the FEM is its ability to handle complicated geometries
(and boundaries) with relative ease. While FDM in its basic form is restricted to
handle rectangular shapes and simple alterations thereof, the handling of geometries
in FEM is theoretically straightforward.

= FDM is not usually used for irregular CAD geometries but more often rectangular or
block shaped models.[17]

= The most attractive feature of finite differences is that it is very easy to implement.

= There are several ways one could consider the FDM a special case of the FEM
approach. E.qg., first order FEM is identical to FDM for Poisson's equation, if the
problem is discretized by a regular rectangular mesh with each rectangle divided into
two triangles.

= There are reasons to consider the mathematical foundation of the finite element
approximation more sound, for instance, because the quality of the approximation
between grid points is poor in FDM.

= The quality of a FEM approximation is often higher than in the corresponding FDM
approach, but this is extremely problem-dependent and several examples to the
contrary can be provided.

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e. solving for
deformation and stresses in solid bodies or dynamics of structures) while computational fluid dynamics
(CFD) tends to use FDM or other methods like finite volume method (FVM). CFD problems usually require
discretization of the problem into a large number of cells/gridpoints (millions and more), therefore cost of
the solution favors simpler, lower order approximation within each cell. This is especially true for 'external
flow' problems, like air flow around the car or airplane, or weather simulation.

Application

A variety of specializations under the umbrella of the mechanical
engineering discipline (such as aeronautical, biomechanical, and
automotive industries) commonly use integrated FEM in design
and development of their products. Several modern FEM
packages include specific components such as thermal,
electromagnetic, fluid, and structural working environments. In a
structural simulation, FEM helps tremendously in producing
stiffness and strength visualizations and also in minimizing

weight, materials, and costs.[18]

Visualization of how a car deforms in
an asymmetrical crash using finite
element analysis.[1]
(http://impact.sourceforge.net)

FEM allows detailed visualization of where structures bend or
twist, and indicates the distribution of stresses and
displacements. FEM software provides a wide range of simulation
options for controlling the complexity of both modeling and
analysis of a system. Similarly, the desired level of accuracy
required and associated computational time requirements can be managed simultaneously to address most
engineering applications. FEM allows entire designs to be constructed, refined, and optimized before the
design is manufactured. The mesh is an integral part of the model and it must be controlled carefully to give
the best results. Generally the higher the number of elements in a mesh, the more accurate the solution of
the discretised problem. However, there is a value at which the results converge and further mesh refinement
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does not increase accuracy.!1?]

This powerful design tool has significantly improved both the
standard of engineering designs and the methodology of the
design process in many industrial applications.[?]  The
introduction of FEM has substantially decreased the time to take
products from concept to the production line.[2!] 1t is primarily
through improved initial prototype designs using FEM that
testing and development have been accelerated.[?2] In summary,
benefits of FEM include increased accuracy, enhanced design and
better insight into critical design parameters, virtual prototyping,
fewer hardware prototypes, a faster and less expensive design

cycle, increased productivity, and increased revenue.[21]

In the 1990s FEA was proposed for use in stochastic modelling for numerically solving probability models

and later for reliability assessment.[24]

See also

https://en.wikipedia.org/wiki/Finite element method

Finite Element Model
knee joint.[20]

of a human

(23]

= Applied element method

= Boundary element method

= Céa's lemma

= Computer experiment

» Direct stiffness method

= Discontinuity layout optimization

= Discrete element method

= Finite difference method

= Finite element machine

= Finite element method in structural mechanics
= Finite volume method

= Finite volume method for unsteady flow
= Infinite element method

= [nterval finite element

= Isogeometric analysis

= Lattice Boltzmann methods

= List of finite element software packages
= Meshfree methods

= Movable cellular automaton

= Multidisciplinary design optimization

= Multiphysics

= Patch test

= Rayleigh-Ritz method

= Space mapping

Tessellation (computer graphics)
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s Weakened weak form
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