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On Wire-Grid Representation of Solid Metallic
Surfaces
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Abstract— This short paper deals with the wire-grid represen-
tation of metallic surfaces in numerical electromagnetic modeling.
We discuss in particular the adequacy of the well-known and
widely used Equal Area Rule to calculate the radii of wire-
grid models. We show that the Equal Area Rule is accurate as
long as the wire-grid consists of a simple rectangular mesh. For
more complex body-fitted meshes, using of other polygons such
as triangles, the Equal Area Rule appears to be less accurate
in reproducing the electromagnetic field scattered by metallic
bodies. The conclusions of the paper are supported by numerical
simulations performed using a parallel version of NEC and
experimental data obtained on a vehicle illuminated by an EMP
simulator.

I. I NTRODUCTION

T HE use of a wire grid model to approximate a continuous
conducting surface was introduced by Richmond in 1966

[1]. By defining expressions for the scattered field of a
wire segment, a point-matching solution was found for the
scattering of a wire-grid structure by solving a system of linear
equations [1]. The paper reports good agreement on simulation
results of structures as simple as a conducting plate and as
complex as a segmented sphere.

The wire-grid method has been adopted and the fast
progress of digital computers has contributed to the evolution
and development of even more complicated arbitrarily shaped
models. The growth in complexity of the evaluated problems
has permitted the observation of certain limitations derived
from the fact that a wire-grid is, in fact, a highly simplified
representation of reality. It has been observed in particular that
the far-field results obtained with a wire-grid representation
of a perfectly conducting closed surface are very reliable [2].
On the contrary, the wire-grid has been considered by some
authors as a poor model of a closed surface when it comes to
interaction calculations (currents and charge densities induced
on the surface of a structure) [2], a rather reasonable conclu-
sion, considering the fact that the wire-grid is an equivalent
model of the solid surface.

A wire-grid approximation of a solid conducting surface
introduces a number of new variables that affect the accuracy
of the solution. For instance, the grid spacing must be carefully
selected. This is further complicated by the fact that this
particular parameter has an impact on the computation time
and resource requirements [3]. In addition, the segments repre-
senting the solid structure must each be defined in terms of its
length, width and position in space. Although the maximum
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segment length can be readily specified as a function of the
frequency, it has been observed by many authors [2], [4], [5],
[6], [7] that numerical simulation results are very sensitive to
wires radii. As of the writing of this paper, the calculation of
this parameter could still be characterized as an art form or
guesswork.

The wire-grid method has evolved and several numerical
formulations based on segmented wires, patches or cells
are available today for the solution of the electromagnetic
scattering problem. One of these numerical solutions is based
on the Method of Moments (MoM), for which the most
popular incarnation in the frequency domain is the Numerical
Electromagnetics Code (NEC) [8].

The “equal area rule” (EAR), also known as the “same
surface area” and in some cases as the “twice surface area”, has
been for years a rule of thumb for the calculation of segment
radius in wire-grid modeling using NEC (e.g. [4], [5], [6], [7]).
The rule states that the surface area of the wires parallel to
one linear polarization is made equal to the surface area of the
solid surface being modeled. Ludwig [4] defines the issue as
being “clearly complex” and even though his paper adds new
information to the problem by running several variations of
a canonical problem (an infinite circular cylinder) it does not
provide the final answer to the wire radius question. The author
does conclude, however, that “the results certainly enhance
confidence in the same surface area wire size rule of thumb”.

The problem of the modeling of an infinite cylinder was
revisited by Paknys in 1991 [5]. The author arrives at the
conclusion that the equal area rule gives the best accuracy for
the E-field for this particular problem. However, the author
also observes that the EAR does not always work and attempts
to explain why a unique criterion has not yet been found.

In 1991, Trueman et al [6] summarized a series of rules
for wire-grid simulation and produced a group of wire-grid
modeling guidelines. They also considered a nonrectangular
grid for which they derived a general expression allowing the
calculation of the segment radius as a function of the two
adjacent mesh surfaces to which it belongs.

The aim of the present paper is to analyze the degree of
accuracy achieved by the EAR for uniform rectangular and
body-fitted wire-grids.

The EAR, as it is known today, is described in Section II.
Also in that section a particular form of the rule of thumb for
squared meshes is presented as well as the generalized formula
developed later for arbitrary meshes. In Section III, we give
some numerical examples of the application of the EAR and
we present some particular cases for which the generalization
fails to give satisfactory results.
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Fig. 1. Four single wires representing a solid square patch

Fig. 2. Surface area of a wire

II. T HE EQUAL AREA RULE

As mentioned in the introduction, the simulation of a solid
surface by means of a wire-grid approximation requires the
proper selection of a certain number of parameters. The seg-
ment length is determined by the frequency at which the model
needs to be evaluated. An appropriate selection of the segment
length results in a more computer efficient model. The use of
too large a number of segments may produce unacceptably
costly models in terms of memory and computing power.
On the other hand, the use of a small number of segments
may have an impact on the accuracy of the solution. The
wire radius, on the contrary, does not affect in any way the
computing power or memory requirements, but, as we shall
see, may have a significant effect on the quality of the solution.

The rule of thumb for the selection of the wire radius which
has been applied for more than a decade was obtained by
empirical observation while testing several different radii on
a canonical problem. As the optimal radius was found, it was
observed that a numerical relationship appears to exist between
the value of this radius and the area of the solid surface being
modeled [4], [5], [6], [7]. Consider a square patch of side∆.
The simplest wire-grid representation of this structure would
be the one formed by four single wires on the four sides of the
square as seen in Figure 1. According to the EAR, the optimum
wire radius for one single segment is the one obtained by
calculating the surface area of the wire (Figure 2 ) and setting
this area equal to the solid surface being modeled, in this
case, the one already shown in Figure 1. As a result, the
circumference of the cross section of the cylindrical conductor
must be made equal to the segment length∆ and, therefore,
the radius given by the EAR may be obtained as:

a =
∆

2 · π (1)

This version of the EAR appears to have worked well for
many problems over the years (e.g. [4], [5], [9]). On the

Fig. 3. Equal Area Rule for an arbitrarily shaped mesh

other hand, the Method of Moments, on which NEC is based,
allows the use of body-fitted meshes that nicely reproduce
the geometry of the object. Clearly, in many cases, a square-
mesh representation of a 3D structure will result in a rather
rough model, from which we would expect less precision and,
therefore, larger errors. Additionally, obtaining a square-mesh
representation of an existing object is not always a simple
task. In fact, complex structures may be represented by the
CAD files that were created and used during design and
construction. These CAD files often use triangular or even
arbitrarily shaped meshes that better represent the real contours
and small details of the geometry.

For arbitrarily shaped meshes, a general expression for the
calculation of the wire radius has been presented in [6]. The
formula takes into account the surface area of the two shapes
adjacent to the segment (A1 and A2) for which the radius
is required (Figure 3). The result is also dependent on the
segment length∆:

a =
A1 + A2

4 · π ·∆ (2)

For the particular case where both adjacent surfaces are
square of side∆, the two areas become∆2 and we obtain
the expression for the EAR of a rectangular mesh as already
presented in (1).

III. N UMERICAL EXAMPLES USING PARALLEL NEC

A model represented by a perfectly squared and homoge-
neous mesh guaranties that other rules in the construction of a
NEC model are well respected. Indeed, a NEC model should
avoid adjacent segments featuring large variations of segment
length and radius. Some variations are allowed as long as they
are smooth [8]. Clearly a perfectly square model will exhibit
no changes at all in segment length and radius.

When a model is constructed using an arbitrarily shaped
mesh, respecting the existing guidelines which include not
having abrupt changes of length and radius in adjacent seg-
ments becomes an almost impossible task to accomplish for
realistic body-fitted models. Obviously, some models can be
constructed with complex meshes that exhibit homogenous
segment lengths, but this only applies to particular figures and
in no way does it apply to extracted CAD data for practical
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Fig. 4. Cube with rectangular Mesh

applications. Another problem derives from the difficulty in
calculating the appropriate wire radii by applying the EAR
general formula. This requires the determination of the surface
area of the two shapes adjacent to the segment under consid-
eration and, therefore, additional and sometimes complicated
post processing of the mesh is necessary.

Let us examine in what follows a simple example of a
closed metallic cube illuminated by a plane wave characterized
by an E-field with an amplitude of 1 V/m and a frequency
of 300 MHz (λ = 1 m). Two different polarizations where
taken into account (1) vertical and (2) oblique polarization.
The side of the cube is 40 cm long. The cube was meshed
using a perfectly square and homogenous grid of 4 cm length
(Figure 4). If the surfaces of the cubic Faraday cage are
well represented by their wire grid homologues, illuminating
the cube with a plane wave and then measuring the E field
anywhere in the interior should give a result very close to zero.
Several versions of the cube were created with different radii,
including the one predicted by the EAR formula. We added
diagonal segments cutting each square patch of the grid in half,
creating a triangular mesh out of the same cube (Figure 5). At
first, one would imagine that this should improve the accuracy
of the wire-grid representation of the cube. All the radii were
recalculated so that they would comply with the EAR general
formula (Equation 2). Since all of the triangles of the resulting
mesh are isosceles (i.e. two equal sides) and identical, the
resulting model exhibited two different radii. Again, several
versions of this cube were created by systematically changing
the values of these two radii keeping the proportionality
factor between them. We found basically no fundamental
differences using other frequencies, in particular the cutoff
frequency of the TE101 mode which is 530 MHz, and 1000
MHz (approximately twice the cutoff frequency of the TE101
mode). The E field calculated at the center of the square-mesh
cube as a function of the wire radius is presented in Figure
6 for a vertical and oblique polarization of the incident field.
Since the triangular model is characterized by two different
radii (corresponding to the vertical/horizontal wires and to the
diagonal ones, respectively), we presented its results in Figure
6 as a function of the radius of the vertical/horizontal segments

Fig. 5. Cube with triangular Mesh

only. The values for the radii predicted by the EAR formula
(for both rectangular and triangular meshes) are also shown
in that figure. As it can be seen, the prediction of the EAR
for the rectangular case corresponds with the minimum of the
total field evaluated at the center of the square meshed cube.
This minimum was, as expected, very close to zero.

Surprisingly, the application of the radius predicted by
the EAR for a square mesh to the vertical and horizontal
segments in the triangular case appears to give nearly optimum
results. Moreover, the radius predicted by the EAR for the
triangular mesh is far from the optimum radius. Contrary to
our expectations, the triangular model was far less effective
than the simple square model (see Fig. 6(a)). Using an oblique
polarization for the incident field (Fig. 6(b)), we obtain a
similar behavior. In this case, the shielding effectiveness of
both models results affected. However, the radius predicted
by the general formula of the EAR for the triangular mesh
does not correspond to the optimum value.

A possible interpretation of this rather unanticipated result
could be the following. The idea behind the EAR is that we
suppose that a metallic surface could be accurately represented
by an equivalent wire grid model with proper values for
segment lengths and radii. In other words, we substitute the
original geometry (a closed metallic surface) by an equivalent
one (a wire grid model). In this case, adding new elements to
the grid making the holes smaller does not improve the perfor-
mance of the whole surface because the size of the holes is not
the only parameter involved. For this particular example, there
might exist an optimum combination of parameters (segment
lengths, radii) that would render the triangular version even
better than the rectangular one, at the same given frequency.
However, this combination of parameters includes segment
radius as probably the most important value, and the existing
EAR formula appears not able to properly predict it.

As a further example, consider the two models in Figure 7
representing a vehicle used in a recent electromagnetic com-
patibility study [10]. Model (a) is a very good approximation
of the original CAD data. The triangular mesh faithfully re-
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(a) Incident plane wave has vertical polarization.
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(b) Incident plane wave has oblique polarization.

Fig. 6. Simulated E-field as a function of the wire radius for a rectangular
(squared) and a triangular meshes

produces the contours and details of the real model. However,
this level of complexity requires some compromises. In fact,
while some of the segments were 14 cm long, others were
as smaller than 1 cm. The first attempts at running the body-
fitted triangular model produced unsatisfactory results. For this
reason, a routine was written to eliminate very small segments,
in an effort to smooth out the differences in length. The
modified model consisted of over 17.000 segments. Model (b),
consisting of about 8.000 segments, is a less dense staircase
approximation of the model. All of the segments have the same
length and radius. It was found that the simplified version
of the model, despite being a less faithful representation of
the real car, exhibited far better results when compared to
measurements. An example of these results can be seen in

(a) Triangular(bodyfitted) mesh (17000+ segments)

(b) Squared mesh (8000 segments)

Fig. 7. Two different meshing techniques for a NEC input file of a car
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Fig. 8. Comparison of measurement and simulation for the two different
meshes

Figure 8. This figure shows the measured vertical component
of the electric field penetrating inside the vehicle illuminated
by an EMP simulator (for the details of the experiment, see
[10], [11]). In the same figure, we also present the computed
results using a parallel version of NEC [10] and obtained using
the two meshes shown in Figs. 7(a) and 7(b). It can be seen
from Figure 8 that the square-mesh model yields very good
results, whereas the results obtained using the triangular mesh
are not satisfactory over a wide frequency range.

IV. SUMMARY AND CONCLUSIONS

In this paper, we discussed the wire-grid representation
of metallic surfaces in numerical electromagnetic modeling.
Considering two types of geometries, namely (1) a simple
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cube, and (2) a complex structure representing a metallic car
shell, we showed that the Equal Area Rule is accurate as long
as the wire-grid consists of a simple rectangular mesh. For
more complex body-fitted meshes, such as triangular ones, the
Equal Area Rule appears to be less accurate in reproducing
the electromagnetic field scattered by metallic bodies. Work
is in progress to derive more accurate criteria to specify the
parameters of the wire-grid model for complex geometries.
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