On Wire-Grid Representation of Solid Metallic
Surfaces

Abraham RubinsteinStudent Member, IEEBarhad RachidiSenior Member, IEEEand Marcos Rubinstein

Abstract— This short paper deals with the wire-grid represen- segment length can be readily specified as a function of the
tation of metallic surfaces in numerical electromagnetic modeling. frequency, it has been observed by many authors [2], [4], [5],
We discuss in particular the adequacy of the well-known and g1 '17] that numerical simulation results are very sensitive to
widely used Equal Area Rule to calculate the radii of wire- ; " " . .
grid models. We show that the Equal Area Rule is accurate as VIS radii. As of the wr.|t|ng of this paper, the calculation of
long as the wire-grid consists of a simple rectangular mesh. For this parameter could still be characterized as an art form or

more complex body-fitted meshes, using of other polygons such guesswork.

as triangles, the Equal Area Rule appears to be less accurate g yire-grid method has evolved and several numerical
in reproducing the electromagnetic field scattered by metallic f lati based ted Wi tch I
bodies. The conclusions of the paper are supported by numerical ormu a,'ons ased on segmen ? wires, patches or Ce. S
simulations performed using a parallel version of NEC and are available tOday for the solution of the eIeCtromagnetIC
experimental data obtained on a vehicle illuminated by an EMP scattering problem. One of these numerical solutions is based
simulator. on the Method of Moments (MoM), for which the most
popular incarnation in the frequency domain is the Numerical

Electromagnetics Code (NEC) [8].

) _ ) _ The “equal area rule” (EAR), also known as the “same
HE use of a wire grid model to approximate a continuousrface area” and in some cases as the “wice surface area”, has
conducting surface was introduced by Richmond in 19666, for years a rule of thumb for the calculation of segment
[1}. By defining expressions for the_ scattered field of gyqiusin wire-grid modeling using NEC (e.g. [4], [5], [6], [7])-
wire segment, a pomt—matchlng solutlop was found f0'f thehe rule states that the surface area of the wires parallel to
scattering of a wire-grid structure by solving a system of line@fe |inear polarization is made equal to the surface area of the
equations [1]. The paper reports good agreement on simulatifliy surface being modeled. Ludwig [4] defines the issue as
results of structures as simple as a conducting plate a”db%%g “clearly complex” and even though his paper adds new
complex as a segmented sphere. information to the problem by running several variations of
The wire-grid method has been adopted and the fagicanonical problem (an infinite circular cylinder) it does not
progress of digital computers has contributed to the evolutigiyide the final answer to the wire radius question. The author
and development of even more complicated arbitrarily shapgdes conclude, however, that “the results certainly enhance

models. The growth in complexity of the evaluated problemg,nfidence in the same surface area wire size rule of thumb”.
has permitted the observation of certain limitations derived The problem of the modeling of an infinite cylinder was

from the fapt that a \{vire-grid Is, in fact, a hig_hly Sir.npliﬁGdrevisited by Paknys in 1991 [5]. The author arrives at the
representation of reality. It has been observed in particular ﬂz:%tnclusion that the equal area rule gives the best accuracy for
the far-field results obtained with a wire-grid representati

. . e E-field for this particular problem. However, the author
of a perfectly conducting closed surface are very reliable | Iso observes that the EAR does not always work and attempts
On the contrary, the wire-grid has been considered by So%eexplain why a unique criterion has not yet been found.
authors as a poor model of a closed surface when it comes to . .
interaction calculations (currents and charge densities induce n 1991, Trueman et al [6] summarized a series of rules

on the surface of a structure) [2], a rather reasonable concflﬂt wire-grid simulation and produced a group of wire-grid

sion, considering the fact that the wire-grid is an equivalemOde'ing guidelines. They also considered a nonrectangular
model of the solid surface grid for which they derived a general expression allowing the

A wire-grid approximation of a solid conducting sur]‘:’:lcé:al.cu"rJltion of the segment ra.dius_ as a function of the two
introduces a number of new variables that affect the accurijjacent mesh surfaces to which it belongs.
of the solution. For instance, the grid spacing must be carefullyThe aim of the present paper is to analyze the degree of
selected. This is further complicated by the fact that thRccuracy achieved by the EAR for uniform rectangular and
particular parameter has an impact on the computation tifagdy-fitted wire-grids.
and resource requirements [3]. In addition, the segments repreThe EAR, as it is known today, is described in Section II.
senting the solid structure must each be defined in terms of Attso in that section a particular form of the rule of thumb for
length, width and position in space. Although the maximursquared meshes is presented as well as the generalized formula
developed later for arbitrary meshes. In Section Ill, we give
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I. INTRODUCTION
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Fig. 1. Four single wires representing a solid square patch
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Fig. 3. Equal Area Rule for an arbitrarily shaped mesh
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‘ other hand, the Method of Moments, on which NEC is based,
2-ma

allows the use of body-fitted meshes that nicely reproduce
the geometry of the object. Clearly, in many cases, a square-
Fig. 2. Surface area of a wire mesh representation of a 3D structure will result in a rather
rough model, from which we would expect less precision and,
therefore, larger errors. Additionally, obtaining a square-mesh
Il. THE EQUAL AREA RULE representation of an existing object is not always a simple
As mentioned in the introduction, the simulation of a soligfSk- In fact, complex structures may be represented by the
surface by means of a wire-grid approximation requires tife”D files that were created and used during design and
proper selection of a certain number of parameters. The Sgagstru_ctlon. These CAD files often use triangular or even
ment length is determined by the frequency at which the modpitrarily shapgd meshes that better represent the real contours
needs to be evaluated. An appropriate selection of the segnfl Small details of the geometry. .
length results in a more computer efficient model. The use ofFor arbitrarily shaped meshes, a general expression for the
too large a number of segments may produce unaccepta%bculation of the wire radius has been presented in [6]. The
costly models in terms of memory and computing poweﬁprmula takes into account the surface area of the two shapes
On the other hand, the use of a small number of segmeffijacent to the segment {Aand A) for which the radius
may have an impact on the accuracy of the solution. THe required (Figure 3). The result is also dependent on the

wire radius, on the contrary, does not affect in any way trégment lengti:
computing power or memory requirements, but, as we shall - M 2)
see, may have a significant effect on the quality of the solution. 4-m-A

The rule of thumb for the selection of the wire radius whichFor the particular case where both adjacent surfaces are
has been applied for more than a decade was obtainedsoyare of sideA, the two areas becomA? and we obtain
empirical observation while testing several different radii othe expression for the EAR of a rectangular mesh as already
a canonical problem. As the optimal radius was found, it wggesented in (1).
observed that a numerical relationship appears to exist between
the value of this radius and the area of the solid surface being ||| N UMERICAL EXAMPLES USING PARALLEL NEC

modeled [4], [5], [6], [7].- Consider a square patch of siie
The simplest wire-grid representation of this structure would A model represented by a perfectly squared and homoge-

be the one formed by four single wires on the four sides of tflgous mesh guaranties that other rules in the construction of a
square as seen in Figure 1. According to the EAR, the optimdFC model are well respected. Indeed, a NEC model should
wire radius for one single segment is the one obtained B}‘/O'd adjacentl segments fee'ltu'rlng large variations of segment
calculating the surface area of the wire (Figure 2 ) and setti}ﬁfgth and radius. Some variations are allowed as ang as they
this area equal to the solid surface being modeled, in tfike smooth [8]. Clearly a perfectly square model will exhibit
case, the one already shown in Figure 1. As a result, tA8 changes at all in segment length and radius.
circumference of the cross section of the cylindrical conductor When a model is constructed using an arbitrarily shaped

must be made equal to the segment lengttand, therefore, mesh, respecting the existing guidelines which include not
the radius given by the EAR may be obtained as: having abrupt changes of length and radius in adjacent seg-
ments becomes an almost impossible task to accomplish for

- A (1) realistic body-fitted models. Obviously, some models can be
2.7 constructed with complex meshes that exhibit homogenous

This version of the EAR appears to have worked well faegment lengths, but this only applies to particular figures and

many problems over the years (e.g. [4], [5], [9]). On th& no way does it apply to extracted CAD data for practical
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Fig. 4. Cube with rectangular Mesh

Fig. 5. Cube with triangular Mesh

applications. Another problem derives from the difficulty in

calculating the appropriate wire radii by applying the EAR

general formula. This requires the determination of the surfaB8!Y: The values for the radii predicted by the EAR formula

area of the two shapes adjacent to the segment under con! of. both rectangular and triangular meshes) are also shown

eration and, therefore, additional and sometimes complica’ﬂf@dthhat figure. AIS it can be seen, the pr;zd;\ctlon. of the EfAE
post processing of the mesh is necessary. or the rectangular case corresponds with the minimum of the

Let us examine in what follows a simple example of ‘tjlotal field evaluated at the center of the square meshed cube.

closed metallic cube illuminated by a plane wave characteriz&fliS MinNiMum was, as expected, very close to zero.

by an E-field with an amplitude of 1 V/m and a frequency Surprisingly, the application of the radius predicted by
of 300 MHz (\ = 1 m). Two different polarizations wherethe EAR f_or a square mesh to the vertlcgl and horlzo_ntal
taken into account (1) vertical and (2) oblique polarizatios€gments in the triangular case appears to give nearly optimum
The side of the cube is 40 cm long. The cube was meshi&sults. Moreover, the radius predicted by the EAR for the
using a perfectly square and homogenous grid of 4 cm lendffgngular mesh is far from the optimum radius. Contrary to
(Figure 4). If the surfaces of the cubic Faraday cage a®&' expegtatlons, the triangular mocjel was far .Iess effeqﬂve
well represented by their wire grid homologues, illuminatin§'@n the simple square model (see Fig. 6(a)). Using an oblique
the cube with a plane wave and then measuring the E fidlglarization for the incident field (Fig. 6(b)), we obtain a
anywhere in the interior should give a result very close to zergMilar behavior. In this case, the shielding effectiveness of
Several versions of the cube were created with different radioth models results affected. However, the radius predicted
including the one predicted by the EAR formula. We addedy the general formula of the .EAR for the triangular mesh
diagonal segments cutting each square patch of the grid in h§€s not correspond to the optimum value.

creating a triangular mesh out of the same cube (Figure 5). AtA possible interpretation of this rather unanticipated result
first, one would imagine that this should improve the accuraépuld be the following. The idea behind the EAR is that we
of the wire-grid representation of the cube. All the radii werguppose that a metallic surface could be accurately represented
recalculated so that they would comply with the EAR generfly an equivalent wire grid model with proper values for
formula (Equation 2). Since all of the triangles of the resultingegment lengths and radii. In other words, we substitute the
mesh are isosceles (i.e. two equal sides) and identical, @féginal geometry (a closed metallic surface) by an equivalent
resulting model exhibited two different radii. Again, severadne (a wire grid model). In this case, adding new elements to
versions of this cube were created by systematically changitig grid making the holes smaller does not improve the perfor-
the values of these two radii keeping the proportionalitipance of the whole surface because the size of the holes is not
factor between them. We found basically no fundamenttle only parameter involved. For this particular example, there
differences using other frequencies, in particular the cutdffight exist an optimum combination of parameters (segment
frequency of the TE101 mode which is 530 MHz, and 100@ngths, radii) that would render the triangular version even
MHz (approximately twice the cutoff frequency of the TE10Detter than the rectangular one, at the same given frequency.
mode). The E field calculated at the center of the square-mds@wever, this combination of parameters includes segment
cube as a function of the wire radius is presented in Figufadius as probably the most important value, and the existing
6 for a vertical and oblique polarization of the incident fieldEAR formula appears not able to properly predict it.

Since the triangular model is characterized by two different As a further example, consider the two models in Figure 7
radii (corresponding to the vertical/horizontal wires and to theepresenting a vehicle used in a recent electromagnetic com-
diagonal ones, respectively), we presented its results in Figpeatibility study [10]. Model (a) is a very good approximation

6 as a function of the radius of the vertical/horizontal segmerat the original CAD data. The triangular mesh faithfully re-
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Howevaigure 8. This figure shows the measured vertical component
In fa®f ‘the electric field penetrating inside the vehicle illuminated

while some of the segments were 14 cm long, others Wé% an EMP simulator (fqr the details of the experiment, see
as smaller than 1 cm. The first attempts at running the body9l: [11]). In the same figure, we also present the computed
fitted triangular model produced unsatisfactory results. For t4fgSults using a parallel version of NEC [10] and obtained using

reason, a routine was written to eliminate very small segmenifa® two meshes shown in Figs. 7(a) and 7(b). It can be seen
in an effort to smooth out the differences in length. ThEOM Figure 8 that the square-mesh model yields very good

modified model consisted of over 17.000 segments. Model (5§Sults, whereas the results obtained using the triangular mesh
consisting of about 8.000 segments, is a less dense stair@igeOt satisfactory over a wide frequency range.
approximation of the model. All of the segments have the same

length and radius. It was found that the simplified version IV. SUMMARY AND CONCLUSIONS

of the model, despite being a less faithful representation ofin this paper, we discussed the wire-grid representation
the real car, exhibited far better results when compared @b metallic surfaces in numerical electromagnetic modeling.
measurements. An example of these results can be seerCamsidering two types of geometries, namely (1) a simple

produces the contours and details of the real model.
this level of complexity requires some compromises.



cube, and (2) a complex structure representing a metallic car
shell, we showed that the Equal Area Rule is accurate as long
as the wire-grid consists of a simple rectangular mesh. For

more complex body-fitted meshes, such as triangular ones, the
Equal Area Rule appears to be less accurate in reproducing
the electromagnetic field scattered by metallic bodies. Work

is in progress to derive more accurate criteria to specify the

parameters of the wire-grid model for complex geometries.
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