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Extending Leeson's Equation
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Abstract: The oscillator phase noise is one of the key limitations in several fields of electronics. An electronic oscillator
phase noise is usually described by the Leeson's equation. Since the latter is frequently misinterpreted and misused, a
complete derivation of the Leeson's equation in modern form is given first. Second, effects of flicker noise and active-
device bias are accounted for. Next the complete spectrum of an electronic oscillator is derived extending the result of
the Leeson's equation into a Lorentzian spectral line. Finally the spectrum of more complex oscillators including delay
lines is calculated, like opto-electronic oscillators.
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Razširitev Leesonove Enačbe
Izvleček: Fazni  šum oscilatorja  je  ena ključnih omejitev  v  številnih  področjih  elektronike.  Fazni  šum elektronskega
oscilatorja običajno opisuje Leesonova enačba. Ker je slednja pogosto slabo razumljena in napačno uporabljena, bo
najprej  opisana  celotna  izpeljava  Leesonove  enačbe.  V  drugem  koraku  je  nujna  obravnava  učinkov  šuma  1/f  in
nastavitve  delovne  točke  aktivnega  gradnika.  Sledi  celovita  izpeljava  spektra  elektronskega  oscilatorja,  ki  rezultat
Leesonove enačbe razširi v Lorentzovo spektralno črto. Končno se izpelje spekter bolj kompliciranih oscilatorjev, kot so
to opto-elektronski oscilatorji.

Ključne besede: fazni šum; Leesonova enačba; delovna točka oscilatorja; Lorentzova črta; opto-elektronski
oscilator
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Introduction

Towards  the  end  of  the  19th century,  the  Hertz
experiments  connected  two  areas  of  physics,
namely  electricity  and  optics.  While  radio
communications  started  with  filtered  noise  from
spark  gaps,  the  latter  were  quickly  replaced  by
much  more  efficient  vacuum-tube  electronic
oscillators,  invented  independently  by  Armstrong
and Meissner around 1912.

Electronic oscillators were so successful that their
spectrum  was  considered  an  infinitely  narrow
spectral  line  at  relatively  low  radio  frequencies

f <30 MHz  in the first half of the 20th century.
Their spectral line was only broadened by external
causes  like  unfiltered  supply,  load  pull,
temperature drift and/or vacuum-tube aging.

On  the  other  hand,  in  optics  it  was  quickly
discovered  that  spectral  lines  of  different  light
sources were not infinitely narrow. The optical line
width  Δλ0  or  Δ f  could be measured with
(relatively  simple)  interferometers  and  expressed
as  longitudinal  coherence  length  d  in  free
space c0 :

d≈
c0

Δ f
≈

λ0
2

Δλ0
(1)

Unfortunately  the  amplitude  dynamic  range  of
simple optical instruments was quite limited.

In  the  second  half  of  the  20th century,  both  the
frequency  resolution  of  radio  measurements  as
well  as  the  amplitude  dynamic  range  of  optical
measurements  improved  by  several  orders  of
magnitude.  Both  keep  improving  as  the  user
requests keep increasing.  Last  but  not  least,  the
spectrum  gap  between  radio  and  optics  is
shrinking  as  radio  frequencies  are  increasing
towards  the  terahertz  region  and  optical
wavelengths  are  increasing  towards  the  far-
infrared region.
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One  of  the  most  important  contributions  is  the
derivation of the oscillator noise spectrum by David
Leeson  in  1966  [1].  The  same  derivation  is
applicable  to  (relatively  low)  radio-frequency
electronic  oscillators  as  well  as  to  lasers.  In
electronics,  high-performance  oscillators  are
followed by buffer stages that may add their own
noise. Electronic limiters may reduce the amplitude
noise but they have no effect on the phase noise. 

The  design  of  a  performing  radio-frequency
oscillator  is  complex.  Besides  basic  radio-
frequency design the knowledge of different noise
contributions is required as well as the knowledge
of  feedback  theory.  Due  to  this  complexity  the
Leeson's  equation  is  frequently  misunderstood,
misused  and  even  degraded  to  an  “empirical”
equation by some sources. The term phase noise
only  starts  appearing in  equipment  specifications
as well as in text books in the 21st century as it is
becoming  the  limiting  parameter  for  increasingly
complex  modulation  schemes  at  ever  increasing
carrier frequencies.

Electronic oscillator

An electronic oscillator includes an amplifier with a
voltage gain A  and a feedback network with a
voltage transfer function  H (ω) .  The feedback
network is usually a frequency-selective resonator
to define the output spectrum of the oscillator:

Figure 1: Electronic oscillator.
For the circuit to oscillate, the Barkhausen criterion
applies:

A⋅H (ω0)=1 (2)

The  Barkhausen  criterion  is  an  equation  with
complex numbers defining both the phase and the
magnitude  of  the  feedback.  The  circuit  can  only
oscillate  at  the  frequency  ω0  where  the
feedback phase is  zero or an integer multiple of

2π . The amplifier should provide enough gain
A  to  start  the  oscillation.  During  steady

oscillation, saturation will  eventually decrease the
amplifier  gain  A  to  satisfy  the  Barkhausen
criterion.

Some feedback networks may generate complex
results.  A  laser  may  oscillate  at  many  different

modes at the same time. Some electronic circuits
may  satisfy  the  Barkhausen  criterion  at  zero
frequency. Such circuits do not oscillate but act as
bi-stables.  A  flip-flop  intentionally  driven  into  a
meta-stable state will quickly settle into one of its
two stable states.

Some form of noise is always present in all circuits.
In  electronic  circuits  operating  in  the  radio-
frequency range, the main contribution is thermal
noise.  No  matter  how  small,  noise  will  always
significantly  affect  the  output  spectrum  of  an
oscillator  as shown later  in  the derivation of  the
Leeson's equation.

In the case of a class A amplifier,  noise actually
starts the oscillation:

Figure 2: Oscillator start.
With some excess gain,  the oscillation amplitude
will initially grow exponentially out of noise. As the
oscillation amplitude increases, the amplifier will be
driven into saturation. The excess gain shrinks and
finally  reaches  the  Barkhausen  criterion  during
steady oscillation.

Some  oscillators  use  a  class  C  amplifier.  Such
oscillators can not start  out  of noise, but need a
start  pulse.  Unfortunately,  after  reaching  steady
oscillation, class C amplifiers add even more noise
than class A amplifiers.

Leeson's equation

The  Leeson's  equation  [1]  describes  how  noise
propagates through the circuit of an oscillator. The
derivation below refers to Fig. 1:

U Nout=U Nin+A⋅H (ω)⋅U Nout (3)

can be rearranged to:

U Nout=
U Nin

1− A⋅H (ω)
(4)

A simple resonator with a lumped capacitor  C
and  a  lumped  inductor  L with  losses  R'
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provides  the  following  transfer  function  of  the
feedback:

H (ω)=
Ri n

Ri n+ j ω L+R ' + 1
j ωC

+Rout
(5)

During steady oscillation the Barkhausen criterion
simplifies  the  transfer  function  for  small  signals

U Nout≪U 0(ω0)  compared to the carrier to:

A⋅H (ω)=
∑ R

∑ R+ jω L+
1

j ωC
(6)

where the sum of resistors denotes:

∑ R=R in+R ' +Rout (7)

The transfer function can be further simplified by
introducing  the  loaded  quality  QL  of  the
resonator:

Q L=
ω0 L

∑ R
(8)

and the frequency offset from the carrier ω0 :

Δω=ω−ω0=ω−
1

√LC
(9)

into:

A⋅H (ω)≈
1

1+ j 2Q L
Δω
ω0

(10)

resulting in:

U Nout≈
U Nin

1−
1

1+ j 2Q L
Δ ω
ω0

→

→ U Nout≈U Nin⋅(1+
ω0

j 2Q LΔω ) (11)

Dealing  with  noise  is  easier  with  average  signal
powers  P j=α∣U j∣

2
 rather  than  voltages.  The

resulting propagation of noise power is:

PNout≈PNin⋅[1+(
ω0

2QLΔω )
2

] (12)

In  engineering  it  is  also  preferred  to  replace
angular  frequencies  ω j=2 π f j  with  ordinary
frequencies:

PNout≈PNin⋅[1+( f 0

2QLΔ f )
2

] (13)

The oscillator noise includes both amplitude noise
and phase noise. Both have equal power:

PNA=PN ϕ=
P Nout

2
≈

P Nin

2
⋅[1+( f 0

2 Q LΔ f )
2

] (14)

Since the amplitude noise PNA  can be removed
easily  with  an  electronic  limiter,  only  the  phase-
noise power PN ϕ  is interesting.

In electronics, noise is usually referred to the input
of an amplifier although it can only be measured on
its output. Therefore for compatibility all quantities
on Fig. 1 are referred to the amplifier input. The
thermal-noise spectral density d P Nin /d f  at the
amplifier  input  is  equal  to  the  sum  of  the
temperatures of all noise sources multiplied by the
Boltzmann constant k B≈1.38⋅10−23J /K :

d PNin

d f
=k B⋅∑ T j=k B⋅(T R+T A) (15)

The  resonator  temperature  T R≫T 0=290 K
may  be  much  higher  than  the  reference
temperature in the case of resonators using active
circuits.  The  noise  temperature  of  a  passive
resonator is usually close to the reference (room)
temperature  T R≈T 0=290 K .  In  this  case  the
thermal-noise  spectral  density  can  be  rewritten
using  the  amplifier  noise  figure  F  (in  linear
units!):

d PNin

d f
≈k B⋅T 0⋅F (16)

Note that  the amplifier noise figure  F  will  be
higher  in  saturation  (steady  oscillation)  than  in
linear operation!

The phase-noise spectral  density of  an oscillator
becomes:

d PN ϕ

d f
=

1
2
⋅[1+( f 0

2Q L Δ f )
2

]⋅k BT 0 F (17)

Since  the  oscillator  output  is  amplified,  limited
and/or  attenuated,  the  important  quantity  is  the
phase-noise  spectral  density  relative  to  the
oscillator output power P0 :

L(Δ f )=
1
P0

⋅
d PN ϕ

d f
(18)

The  relative  phase-noise  spectral  density  is
denoted by the symbol  L(Δ f )  and has units

[Hz−1
]  in the Leeson's equation:

L(Δ f )=[1+( f 0

2Q LΔ f )
2

]⋅k BT 0 F
2 P0

(19)

Due  to  the  extremely  wide  dynamic  range  of
L(Δ f )  it  is common to use logarithmic units,

namely  decibels  relative  to  the  carrier  per  unit
bandwidth or [dBc/Hz ] :

L(Δ f )[dBc /Hz ]=10 log10 [ L (Δ f )⋅1 Hz ] (20)

Unfortunately many popular sources like [2] forget
to multiply  L(Δ f )  in linear units with the unit
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bandwidth  1Hz ,  degrading  the  Leeson's
equation to an empirical equation.

As an example, the spectrum of a typical oscillator
is computed on Fig. 3 using the Leeson's equation.
The  carrier  power  is  selected  as P0=0.1 mW
typical at the input of a small-signal RF transistor.
The noise figure degradation is comparable to the
gain  compression  due  to  saturation,  therefore

F=10dB  is  a  reasonable  choice.  The  most
important  parameter  of  an  oscillator,  the  loaded
quality  of  the  resonator  is  selected  Q L=10
corresponding  to  a  varactor-tuned  microstrip
resonator at f 0=3GHz :

Figure 3: Oscillator spectrum.
The  propagation  of  noise  through  an  oscillator
increases  the  phase  noise  close  to  the  desired
carrier well above the thermal noise. Since the two
noise side-bands are symmetric, it makes sense to
observe  a  single  side  band  in  detail  using  a
logarithmic scale for the frequency offset  Δ f
from the carrier as shown on Fig. 4:

Figure 4: SSB phase-noise spectrum.
At  frequency  offsets  ∣Δ f∣> f 0/(2Q L)  larger
than the Leeson's frequency, the oscillator has little
effect on the noise spectral density. Other circuits
like  buffer  amplifiers,  limiters  and/or  attenuators
add  their  own  thermal  noise.  If  required,  this

thermal  noise  can  easily  be  filtered  away  using
resonators  with  a  similar  Q L  as  used  in  the
oscillator itself.

At  frequency  offsets  ∣Δ f∣< f 0/(2QL)  smaller
than  the  Leeson's  frequency,  the  predominant
noise is the oscillator phase noise. Other circuits
like amplifiers, limiters and/or attenuators have little
effect  on  the  phase-noise  spectral  density.  The
oscillator phase noise can NOT be filtered away
using resonators with a similar  Q L  as used in
the oscillator itself.

Since the oscillator phase-noise is the interesting
quantity, a simplified Leeson's equation neglecting
thermal noise is frequently used:

L(Δ f )≈( f 0

QLΔ f )
2

⋅
k BT 0 F

8 P0

(21)

The result  of  the  simplified  Leeson's  equation  is
shown  with  a  dotted  line  on  Fig.  4.  There  is  a
significant difference from the full equation only at
large offsets  ∣Δ f∣> f 0/(2Q L)≈150 MHz  (in the
example shown on Fig. 3 and Fig. 4).

The Leeson's equation was derived assuming that
the  noise  amplitude  U Nout≪U 0(ω0)  is  much
smaller  than  the  desired-carrier  amplitude.  This
assumption  no  longer  holds  at  small  offsets

Δ f .  The Leeson's  equation only holds when
the relative phase-noise spectral density is much
smaller  than  the  L(Δ f )≪Δ f −1  limit  shown
with a dotted line on Fig. 4. In practice, the result
on  Fig.  4  is  only  valid  at  offsets  above

Δ f >1 kHz .

The  relative  phase-noise  density  at  very  small
offsets  Δ f  is  usually  not  very  important  in
practical  electronic  oscillators.  It  is  much  more
important in laser oscillators. A corrected derivation
of  the  Leeson's  equation  for  very  small  offsets

Δ f  will be presented later.

Effects of phase noise

Phase noise was first noted as residual frequency
modulation  in  analog  radio  links.  The  unwanted
random  frequency  deviation  (root-mean-square
value) can be calculated as:

σ f =√2 ∫
f MIN

f MAX

Δ f 2 L (Δ f )d Δ f (22)

The frequency limits  f MIN  and  f MAX of the
integral  are  the  band  limits  of  the  analog  base-
band modulation signal.

In QAM radio links, phase noise randomly rotates
the constellation of the modulation. The unwanted
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random angle of rotation (root-mean-square value)
can be calculated as:

σϕ=√2 ∫
Bcarrier−recovery

Bmodulation

L (Δ f )d Δ f (23)

Any phase noise above Δ f >Bmodulation  is filtered
away by the channel filter in the receiver. Further it
is assumed that the carrier-recovery circuit of the
receiver  is  able  to  track  slow  frequency  and/or
phase changes below Δ f <Bcarrier−recovery .

In digital  communications, phase noise manifests
itself as clock jitter. The unwanted clock jitter (root-
mean-square value) can be calculated as:

σ t=
σϕ

ω0
=

1
2π f 0 √2 ∫

Bclock −recovery

f MAX

L(Δ f )d Δ f (24)

Limiting the bandwidth of the clock, the upper limit
f MAX< f 0  is  less  than  the  clock  frequency.

Further it is assumed that the clock-recovery circuit
of  the  receiver  is  able  to  track  slow  frequency
and/or phase changes below Δ f <Bclock −recovery .

Finally  in  all  radio  communications,  phase  noise
causes  interference  to  neighbor  channels.  The
interference power can be calculated as:

P i=P 0⋅∫
Δ f 1

Δ f 2

L (Δ f )d Δ f (25)

The frequency  limits  Δ f 1  and  Δ f 2 of  the
integral are the frequency offsets of the interfered
channel from the interfering carrier P0( f 0) .

Note that all of the above-mentioned integrals start
from an offset  Δ f >0  larger than zero. Radio
equipment  is  usually  designed  to  work  with
relatively  clean  sources  where  the  phase-noise
power  PN ϕ≪P0  is  much  smaller  than  the
carrier  power  and the Leeson's  equation is  valid
thanks  to  L(Δ f )≪Δ f −1  in  the  region  of
interest.

Active-device noise

Besides  thermal  noise,  active  devices  also  add
flicker noise to the amplified signal. Flicker noise is
usually  described  as  an  increase  of  the  radio-
frequency  noise  figure  F  into  a  frequency-
dependent noise figure F ' ( f ) :

F ' ( f )=F⋅(1+ f C

f ) (26)

The  parameter  describing  flicker  noise  is  the
corner frequency f C . The latter depends on the
device  technology.  Surface  semiconductor
devices like a silicon MOSFET, a GaAs MESFET
or a GaAlAs HEMT may have the corner frequency

in  the  range  f C≈1...10 MHz .  Bulk
semiconductor  devices  like  a  silicon  BJT  or  a
silicon JFET may have the corner frequency in the
range f C≈1...10 kHz .

Although a HEMT may produce slightly less noise
at  radio  frequencies  than  a  BJT,  a  HEMT  is
significantly noisier at low frequencies than a BJT
as shown on Fig. 5:

Figure 5: Active device noise figure.
In  an  oscillator,  the  active  device  operates  in
saturation while producing steady oscillations. The
nonlinear  effects  associated  with  saturation  up-
convert the low-frequency flicker noise into noise
side  bands  very  close  to  the  carrier  radio
frequency.  High-performance  radio-frequency
(microwave) oscillators therefore use silicon bipolar
transistors due to their lower flicker noise.

The  additional  up-converted  flicker  noise  can  be
built  into  the  Leeson's  equation  describing  the
increase the oscillator phase noise at small offsets

∣Δ f∣< f C :

L(Δ f )=[1+( f 0

2Q LΔ f )
2

]⋅k BT 0 F
2 P0

⋅(1+
f C

∣Δ f ∣) (27)

The phase noise of the same oscillator example as
shown earlier including flicker noise is shown on
Fig. 6:
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Figure 6: Phase noise including flicker noise.
Calculations  including  flicker  noise  may  not  be
simple. Calculating the flicker-noise power  PN

from equation (26):

PN = ∫
f MIN

f MAX

k B⋅F⋅(1+
f C

f )d f (28)

may give an infinite result:

lim
f MIN →0

∫
f MIN

f MAX

k B⋅F⋅(1+
f C

f )d f →∞ (29)

suggesting that further limitations apply to (26) at
very low frequencies.

Further  it  is  necessary  to  understand  that  the
flicker-noise  corner  frequency  f C  in  equation
(26) is different from the  f C  in equation (27)!
Between the  two  quantities  there  is  a  frequency
conversion  that  may  be  more  or  less  efficient
depending on parameters that are NOT described
by the Leeson's equation!

The phase noise of an oscillator depend heavily on
the  bias  and  DC  decoupling  circuits.  Since  the
impedance  parameters  [Z ij ]  of  a  bipolar
transistor  depend  mainly  on  the  DC  currents
through the  device,  the  currents  through the RF
amplifier  transistor  have  to  be  regulated  as
constant as possible with a bias circuit like that on
Fig.  7  [3].  Keeping  the  impedance  parameters

[Z ij ]  constant attenuates the up-conversion of
low-frequency  flicker  noise  to  the  RF  carrier
frequency:

Figure 7: Oscillator bias circuit.
Flicker  noise  is  not  the  only  concern  while
designing  the  bias  network  of  an  oscillator.  To
avoid additional unwanted modes of the resonator

H (ω) ,  RF chokes (inductors)  usually  have to
be replaced with resistors R5  and R6 .

Besides  the  RF  feedback  there  is  yet  another
feedback  circuit  built  into  every  electronic
oscillator.  Gain  reduction  at  saturation  during
steady  oscillation  is  governed  by  this  additional
feedback  (bottom  graph  on  Fig.  2).  A  poorly-
designed bias network will make this low-frequency
feedback  unstable  causing  self-quenching  of  the
oscillator.  While self-quenching may be desirable
in a super-regenerative receiver (Armstrong 1922),
it  has  a  catastrophic  effect  on  the  oscillator
spectrum.

The gain-reduction feedback already has one pole
due  to  the  RF  energy  stored  in  the  resonator

H (ω) , rectified by the nonlinear effects of the
saturation of  the active device and added to the
DC bias of the latter. Additional poles are added by
the RF bypass capacitors C1  and C2  and by
the  DC-bias  decoupling  capacitors  C3  and

C4 . Unless the component values on Fig. 7 are
selected  carefully,  the  oscillator  will  be  self-
quenching.  Even  if  the  oscillator  is  not  self-
quenching,  a  poor  phase  margin  of  the  bias
feedback may cause a significant increase of the
oscillator phase noise.

If varactors are used to tune the oscillator (VCO)
[5],  the  phase  noise  is  degraded  further.  First,
varactors decrease the QL  of the resonator due
to  their  series  resistance.  Second,  the  tuning
voltage may introduce additional noise. Even the
noise voltage introduced by the resistors acting as
RF chokes to tune the varactors is not insignificant.
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Spectral-line width

The Leeson's equation (19) is unable to describe
the frequency spectrum of an oscillator very close
to its central  frequency ω0  or  f 0  when the
condition  L(Δ f )≪Δ f −1  is no longer fulfilled.
Although there are several comprehensive papers
on this topic like [4], [5], a simplified derivation is
given here.

Analyzing  Fig.  1,  the  feedback  gain  has  to  be
slightly  less  than  unity  during  steady  oscillation,
since some noise is being added all  of the time.
Accordingly,  the original  Barkhausen criterion (2)
has to be modified to:

A⋅H (ω0)=1−ϵ (30)

where the gain decrease is described by the very
small,  but  non-zero  quantity  0<ϵ≪1 .  The
feedback transfer function (10) is modified to:

A⋅H (ω)=
1−ϵ

1+ j 2 QL
Δω
ω0

(31)

resulting in equation (11) extended to:

U Nout=
U Nin

1− A⋅H (ω)
≈

U Nin

1−
1−ϵ

1+ j 2Q L
Δ ω
ω0

→

→ U Nout≈U Nin⋅
1+ j 2QL

Δω
ω0

j 2 Q L
Δω
ω0

−ϵ
(32)

At  frequency  offsets  ∣Δ f∣> f 0/(2Q L)  larger
than the Leeson's frequency, the oscillator has little
effect  on the  noise  while  other  circuits  add their
own noise.  It  therefore makes sense to evaluate
(32)  at  small  offsets  ∣Δ f∣< f 0/(2Q L)  only.
Considering  ∣j 2 Q LΔω0 /ω0∣≪1 ,  equation  (32)
simplifies to:

U Nout≈
U Nin

j 2Q L
Δ ω
ω0

−ϵ
(33)

Replacing  noise  voltages  with  average  powers,
replacing  angular  frequencies  with  ordinary
frequencies and considering the phase noise only:

PN ϕ=
PNout

2
≈

P Nin/2

(2Q L
Δ f
f 0

)
2

+ϵ
2 (34)

Introducing the thermal-noise spectral density (15)
or (16) and the spectral-line half width:

f HW=
ϵ f 0

2QL

(35)

the simplified Leeson's equation (21) evolves into a
Lorentzian spectral line:

L(Δ f )=( f 0

QL
)

2

⋅
1

Δ f 2+ f HW
2

⋅
k B T 0 F

8 P0

(36)

The  missing  quantities  f HW  or  ϵ  can  be
calculated by summing the whole relative spectrum
power:

∫
− f 0

∞

L (Δ f )d Δ f =1 (37)

In  all  practical  cases  the  integral  start  may  be
replaced by  −∞ ,  the error being smaller than
neglecting far-away thermal noise:

∫
−∞

∞

( f 0

QL
)
2

⋅
1

Δ f 2+ f HW
2

⋅
kB T 0 F

8 P0

d Δ f =

=( f 0

QL
)

2

⋅
k BT 0 F

8 P0
[ 1

f HW

⋅arctan Δ f
f HW

]
Δ f =−∞

Δ f =∞

=

=( f 0

QL
)

2

⋅
k BT 0 F

8 P0

⋅ π
f HW

≈1 (38)

The spectral-line half width is obtained as:

f HW≈π⋅( f 0

QL
)
2

⋅
k B T 0 F

8 P0

(39)

The small correction of the Barkhausen criterion is:

ϵ≈
π f 0 k BT 0 F

4QL P0

(40)

Analyzing  the  same  oscillator  example  with
f 0=3GHz ,  Q L=10 ,  P0=0.1 mW and
F=10 dB  as on Fig. 3 and Fig. 4, a spectral-line

half  width  of  f HW≈14 Hz  is  obtained.  The
corresponding  correction  of  the  Barkhausen
criterion is small indeed ϵ≈10−7 . One side band
of the calculated spectrum L(Δ f )  is shown on
Fig. 7 in logarithmic scale:

Figure 7: Lorentzian spectral line.
The  result  of  the  original  Leeson's  equation  is
plotted with  a dotted line on the same graph as
well as the Δ f −1  limit. Note that at small offsets
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the spectrum L(Δ f )  flattens thus avoiding the
Δ f −1  limit.

Besides thermal noise, additional noise like flicker
noise  further  broadens  the  spectral  line.  The
calculation is more difficult since the low-frequency
flicker-noise  spectrum  is  not  up-converted  by  a
single carrier frequency but by the oscillator signal
itself with non-zero spectral width.

In most cases the spectral-line half width remains
much narrower  f HW ≪Brecovery  than the carrier
or clock recovery circuits in radio equipment. In all
these  frequent  cases  the  result  of  the  original
Leeson's equation is sufficient.

Delay-line oscillators

The  most  important  parameter  in  the  Leeson's
equation  is  the  loaded  quality  QL  of  the
resonator. Unfortunately electrical resonators in the
radio-frequency  range  do  not  achieve  very  high
values of Q L . Mechanical resonators like quartz
crystals  are  frequently  used  in  high-performance
radio oscillators. Electrical resonators may achieve
very high values of Q L  in the optical-frequency
range. Lasers may produce relatively very narrow
spectral  lines.  Unfortunately  dividing  optical
frequencies  down  to  radio  frequencies  is  not
practical yet.

Delay  lines  may  act  as  resonators  in  oscillator
circuits.  Their  equivalent  Q LD  is  directly
proportional  to  the  delay  τD  and  increases
linearly with frequency:

Q LD=π f 0 τD (41)

Unfortunately delay lines may fulfill the Barkhausen
criterion (2) at many different frequencies causing
a  laser  to  oscillate  on  many  different  modes.
Lasers may use frequency-selective mirrors or gain
medium to decrease the number of modes.

A similar approach may be used to design radio-
frequency oscillators using either acoustic (BAW or
SAW) delay lines or opto-electronic delay lines [6].
The latter look promising due to the low loss and
wide bandwidth of optical fibers. The basic design
of an opto-electronic oscillator is shown on Fig. 8.
The desired mode of oscillation is selected by an
additional electric (microwave) resonator:

Figure 8: Opto-electronic oscillator.
The Barkhausen criterion (2) can be rewritten for
the circuit on Fig. 8 as:

A1⋅H R(ω0)⋅A2⋅H D(ω0)=1 (42)

If  the electric  resonator  is  tuned precisely  to the
desired mode of the delay line, the voltage transfer
function of the latter can be written as:

H D(ω)=a⋅e− jΔω τD (43)

For small signals and small offsets:

A1⋅H R(ω)⋅A2⋅H D(ω)=
e− j Δωτ D

1+ j 2Q LR
Δω
ω0

(44)

The noise-voltage transfer function becomes:

U Nout≈
U Nin

1−
e− j Δω τD

1+ j 2Q LR
Δω
ω0

(45)

The corresponding phase-noise average power is:

PN ϕ≈
PNin

2
⋅∣1−

e− j Δω τD

1+ j 2QLR
Δω
ω0

∣
−2

(46)

Finally  the  extended  Leeson's  equation  for  the
opto-electronic  oscillator  shown  on  Fig.  8
becomes:

L(Δ f )=
k B∑ T j

2 P0

⋅∣1−
e− j 2πΔ f τD

1+ j 2QLR
Δ f
f 0

∣
−2

(47)

The largest  contribution to  ∑ T j  comes from
the  opto-electronic  delay  line  that  may  include
flicker noise:

∑ T j≈T D⋅(1+
f C

∣Δ f∣) (48)

In  an  opto-electronic  oscillator  as  on  Fig.  8  the
most  vulnerable  point  in  the circuit  is  the photo-
diode output. Here the signal power  P0  is the
lowest  and  the  relative  phase-noise  spectral
density  L(Δ f )  is  calculated.  Saturation  will
likely  be  achieved  in  A2  since  optical
modulators require substantial amounts of RF drive
power.  The output  L(Δ f )out  is  taken after  all
amplification and filtering:

8



Original scientific paper

https://doi.org/XX.XXXXX/XXXXXXXXX.XXX 

L(Δ f )out≈
L(Δ f )

1+(2QLR
Δ f

f 0
)

2 (49)

The analytical result for L(Δ f )out  is fitted to the
well-documented experimental  data from [7].  The
latter  describes a  microwave  f 0=3GHz  opto-
electronic oscillator with the delay line made from

l≈15 km  of optical fiber resulting in a delay of
τD≈75μ s  corresponding  to  a  Q LD≈7⋅105 .

Mode  selection  is  performed  by  an  additional
microwave  dielectric  resonator  with  the

QLR≈8300 .

The opto-electronic delay line noise temperature is
found as expected around  T D≈2⋅105 K .  What
really matters is the ratio  T D /P 0  and the latter
can be measured conveniently at the output of a
PIN-FET module. Flicker noise comes at least in
part from the built-in HEMT amplifiers. Due to the
high  noise  contribution  from  the  opto-electronic
delay  line,  the  overall  flicker-noise  corner
frequency is found around f C≈5 kHz .

The fitted analytical result for  L(Δ f )out  shown
on Fig. 9 shows the unwanted side modes at the
correct  frequencies.  However,  the  peak
magnitudes  of  the  unwanted  modes  are  about

15dB  stronger than the measured values. This
may  be  due  to  an  insufficient  resolution  of  the
phase-noise test setup:

Figure 9: Simulated OEO phase noise.
The well-documented  experimental  data  from [7]
additionally  includes  results  with  a  Q-multiplier
circuit.  The latter  increases the loaded quality  of
the  microwave  mode-selection  filter  to  about

QLR≈75000  thus  improving  the  rejection  of
unwanted modes. Since a Q multiplier is an active
filter,  the system noise temperature increases  to
about T D≈5⋅105K .

The  fitted  analytical  result  for  L(Δ f )out

including the Q multiplier is shown on Fig. 10. The
unwanted-mode magnitudes are reduced and their

line  widths  are  broader.  Both  frequencies  and
magnitudes are very close to the measured values
in [7]:

Figure 10: Simulated OEO with Q multiplier.
Finally,  a parabolic  approximation of  the close-in
response  of  a  single  microwave  resonator
suggests  that  the  unwanted  mode  rejection  is
proportional  to  (Q LR)

4 .  For  a  Q-multiplication
factor  m≈8  as described in [7], the unwanted-
mode  rejection  improvement  is  expected  as

10 log10 m4
≈36dB . The difference between Fig.9

and Fig.  10,  corrected for  the change in  T D ,
comes  much  closer  to  this  value  than  the
measured data published in [7], again suggesting
an  insufficient  resolution  of  the  phase-noise  test
setup.

Conclusions

The  Leeson's  equation  for  relative  phase-noise
spectral  density  is  frequently  misunderstood  and
misused even in commercial  simulation software.
Therefore  a  complete  derivation  is  made  first  to
understand the limitations of the different forms of
the  same  equation.  While  derivations  produce
results in linear units  [Hz−1

] ,  logarithmic units
[dBc/Hz ]  (20) are used elsewhere including the

graphs in this article.

The complete Leeson's equation (19) is frequently
simplified to (21),  since wide-band thermal  noise
originates elsewhere and not just in the oscillator.

Flicker  noise  is  usually  built  in  the  Leeson's
equation like (27), but its exact magnitude actually
depends on factors  not  included in  the Leeson's
equation,  like  the  design  of  active-device  bias
networks.  Last  but  not  least,  the  simple  1/ f
approximation  of  flicker  noise  may produce non-
physical, infinite results in some cases.

The original Leeson's derivation is valid for small
noise signals only. The result  is only valid in the
offset  range  when  L(Δ f )≪Δ f −1 .  When
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L(Δ f )  approaches  or  even  exceeds  the
Δ f −1  limit,  non-physical  results are obtained.

In  the  latter  case  a  complete  derivation  of  the
oscillator spectrum has to be performed including
the  shape  of  the  main  spectral  line  of  non-zero
width.  Flat  thermal  noise  produces  a  Lorentzian
spectrum (36).

Finally,  the  Leeson's  equation  is  extended  to
delay-line  oscillators  and  in  particular  opto-
electronic oscillators. The extended equation (47)
is  fitted  to  experimental  data  showing  potential
problems of the latter.

As a  conclusion  of  all  of  the  above findings,  an
electronic oscillator is just a Q multiplier amplifying
and  filtering  its  own  noise.  The  Q-multiplication
factor is very large  m≈ϵ

−1  resulting in a very
small,  but  non-zero  spectral-line  half  width

f HW>0 .  Besides  bandwidth  differences  of
many orders of magnitude, an electronic oscillator
produces  a  similar  signal  to  the  spark  radio
transmitter or filtered white light in optics.
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