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An Analytic Circuit-Based Model for White and
Flicker Phase Noise in LC Oscillators
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Abstract—A general circuit-based model of LC oscillator phase
noise applicable to both white noise and 1 noise is presented.
Using the Kurokawa theory, differential equations governing the
relationship between amplitude and phase noise at the tank are de-
rived and solved. Closed form equations are obtained for the IEEE
oscillator phase noise for both white and 1 noise. These solu-
tions introduce new parameters which take into account the corre-
lation between the amplitude noise and phase noise and link them
to the oscillator circuit operating point. These relations are then
used to obtain the final expression for Voltage noise power density
across the output oscillator terminals assuming the noise can be
modeled by stationary Gaussian processes. For white noise, gen-
eral conditions under which the phase noise relaxes to closed-form
Lorentzian spectra are derived for two practical limiting cases.
Further, the buffer noise in oscillators is examined. The forward
contribution of the buffer to the white noise floor for large offset
frequency is expressed in terms of the buffer noise parameters. The
backward contribution of the buffer to the 1 � 2 oscillator noise
is also quantified. To model flicker noise, the Kurokawa theory is
extended by modeling each1 noise perturbation in the oscillator
as a small-signal dc perturbation of the oscillator operating point.
A trap-level model of flicker noise is used for the analysis. Condi-
tions under which the resulting flicker noise relaxes to an 1 � 3

phase noise distribution are derived. The proposed model is then
applied to a practical differential oscillator. A novel method of
analysis, splitting the noise contribution of the various transistors
into modes is introduced to calculate the Kurokawa noise parame-
ters. The modes that contribute the most to white noise and flicker
noise are identified. Further, the tail noise contribution is analyzed
and shown to be mostly up-converted noise. The combined white
and flicker noise model exhibits the presence of a number of corner
frequencies whose values depend upon the relative strengths of the
various noise components. The proposed model is compared with a
popular harmonic balance simulator and a reasonable agreement
is obtained in the respective range of validity of the simulator and
theory. The analytical theory presented which relies on measurable
circuit parameters provides valuable insight for oscillator perfor-
mance optimization as is discussed in the paper.

Index Terms—Correlation, flicker noise, Kurokawa, Lorentzian,
noise floor, phase noise, traps, uncorrelated modes, white noise.

I. INTRODUCTION

OSCILLATOR phase noise is an important design criterion
in any communication system [1]. The reciprocal mixing

of oscillator phase noise with signal noise in RF transceivers
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causes a number of undesirable effects like inter-channel in-
terference, increased bit-error rate (BER) and synchronization
problem in digital systems. With complex modulation schemes
like orthogonal frequency-division multiplexing (OFDM), the
requirement of spectral purity becomes ever more stringent.
Hence, achieving good phase noise performance and the means
to model it becomes important.

A significant amount of work has been done in the field of
phase noise characterization. Early models like those of Leeson
propose a linear time-invariant (LTI) model of phase noise
[2], [3]. These models tend to depict a dependence of
voltage-spectral density thereby implying infinite noise power
near the harmonics [1]. These models provide some limited
insight into noise analysis and oscillator design. These sim-
plified models do not give us a complete understanding of the
oscillator noise spectrum. In order to improve the performance
of the models, some approaches incorporated a linear time
variant model of noise [4], [5]. These models give us a better
explanation of certain portions of the frequency spectrum (like
the region of an oscillator spectrum arising from
noise and the corner frequency between the and
regions). However, these models rely on complex functions
which are difficult to compute in practical oscillators. Also the
correlation factor between amplitude and phase fluctuations is
neglected.

In a detailed paper on oscillator noise [6], Kaertner resolves
the oscillator response into phase and magnitude components.
A differential equation was obtained for the phase error. A sim-
ilar effort was made in [1] where the oscillator response is de-
scribed in terms of a phase deviation and an additive component
called orbital deviation. Both [6] and [1] obtained the correct
Lorentzian spectrum for the power-spectral density (PSD) due
to white noise. However, neither of these models is circuit fo-
cused, and limited insight is therefore provided to the circuit de-
signer. In summary though considerable work has been done in
the field of oscillator noise analysis, to our knowledge no theory
provides a circuit based approach using simple easy-to-measure
parameters to describe the phase noise.

In this paper, we first develop differential equations for the
amplitude and phase deviations treating noise as a perturbation.
The fact that an oscillator can be linearized about its operating
point is very much a valid concept as has been demonstrated in
numerous papers [7]. We rely on the Kurokawa theory [8] for
this purpose. The advantage of this approach is that it gives us a
circuit focus and thus enables us to incorporate the circuit based
parameters into the phase noise equations. We shall provide a
more rigorous treatment of noise due to both phase and ampli-
tude deviations with due consideration for correlation existing
between the two [9]. In addition, most models, while giving de-
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scriptions of oscillator phase noise do not account for the circuit
buffer noise. In this paper we show how the buffer noise can
be incorporated in the noise model to account for the oscillator
noise floor while also contributing in part to the colored oscil-
lator noise spectrum.

While white noise can be easily represented both in time as
well as frequency domains, noise is not so easy to charac-
terize. The fact that this noise has a frequency dependence
implies that at , the noise power is infinite. Many re-
searchers [6], [10] have postulated stationary process models or
piecewise-stationary models to simplify the phase noise deriva-
tions. In our approach we will start our analysis at a single device
trap level and then extend it for all traps as shown in [11].

In oscillators, noise has a tendency to get up-converted
and produce a noise spectrum. To analyze the impact
of noise on the oscillator we note that since the noise
process is significant only at very low frequencies, the perturba-
tion it causes to oscillation is equivalent to the perturbation of
the dc bias of the devices involved. As we shall see, this model
will help us in obtaining an analytical solution. The method-
ology used will further, enable us to take into consideration, the
correlation between the phase and amplitude deviations due to
noise which has been neglected in previous work.

Finally, we combine the expressions for phase noise due to
white noise, flicker noise and buffer noise in one single closed
form analytical expression and compare the model so obtained
with harmonic balance simulation results.

II. NONLINEAR PERTURBATION ANALYSIS OF A OSCILLATOR

Fig. 1 shows a negative resistance oscillator model. The basic
oscillator has been divided into a linear frequency sensitive
part (having admittance ) and a nonlinear or device
part (which is both frequency and amplitude sensitive and
has admittance given by ). In a conventional LC
oscillator, the linear part usually represents the tank. For all
derivations henceforth we shall consider the tank to be a parallel

circuit. In steady state, in the absence of noise and other
perturbing signals, the operating point ( , ) is given by

represents an equivalent noise source which arises due
to noise sources in both the linear and the nonlinear parts of
the oscillator circuit and which will be extracted in the example
shown later. It can be shown (Appendix I) that the phase and
amplitude deviation obey the following
Langevin equations:

(1)

(2)

when the oscillator is linearized about its operating point voltage
amplitude and frequency [8], where the correlation
factor and stability factor are given by

Fig. 1. Admittance model of an oscillator.

where and are obtained from in Fig. 1 using

(3)

(4)

Note that the processes and are similar to Ornstein–Uhlen-
bech processes [13] except that they are correlated. The term
accounts for the correlation between and (i.e., if
there is no correlation). The terms and
which represent the variation of the admittances with perturba-
tions, are given by

(5)

(6)

This is a more general treatment than in [8] which uses a
frequency independent . If the voltage across the tank
is given by

then the autocorrelation of the voltage for stationary Gaussian
noise processes is given by (see derivation in Appendix II)

(7)
and represent the autocorrelation functions of

the amplitude deviation and the phase , respectively. As
is verified in Appendix III, and are stationary pro-
cesses for the noise processes considered in this paper under the
assumption that the oscillator is on for a long enough time.

The first term in (7) which is proportional to is the phase
modulation (PM) noise. The second term involving is
the amplitude modulation (AM) noise term. Equation (7) is de-
rived neglecting a third contribution arising from the correlation
between phase and amplitude noises. This is justified as the PM
noise will be verified below to be dominant over AM noise so
that it can be assumed to be dominant as well over this third
contribution.

We shall first consider white noise sources. Following
Kurokawa [8], we have the following spectral densities:
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As is shown in Appendix III the expressions for and
are derived from the Langevin equations (1) and (2) to

be given by

where we introduce the frequency

The autocorrelation function for the tank voltage is then

According to the Wiener–Khintchin theorem, the PSD of
the voltage across the tank can now be obtained by taking the
Fourier transform of

Note that is directly observable on a spectrum analyzer.
which is derived in Appendix III is the IEEE definition

of phase noise [12] and requires a phase detector. For
(no correlation) a closed form solution under the form of a

Lorentzian (defined below) is obtained for . No exact analytic
solution is available for the Fourier transform of when
we account for the correlation between the amplitude and phase
( nonzero). However, an approximate analytical Lorentzian so-
lution can be obtained for two practical limit conditions

(8)

where is the single side band (ssb) voltage-spectral
density. In (8), we use and define as

for or for
and all

for and

with

The asymptotic result for is derived in Appendix VI
using the stationary phase approximation. If is very large the
second approximation involving the correlation factor
is the relevant choice.

Fig. 2. Comparison of PM voltage noise spectrum with various Lorentzian ap-
proximations.

For intermediate value of the Fourier transform of
can readily be calculated numerically. This is illustrated in Fig. 2
for MHz. As is shown in Fig. 2 is seen
to relax for to the limiting Lorentzian with . The
voltage noise spectrum is no longer strictly a Lorentzian, and an
inflexion point is introduced in the PM voltage noise density at
the frequency .

The expressions of obtained for (no correlation)
are consistent with other published works [1], [6]. A Lorentzian
spectrum ensures that the total power of the oscillator remains
finite. A spectrum of noise-spectral density for all fre-
quencies on the other hand implies infinite oscillator power.
Note that for large values of compared to , the
spectrum can be approximated as

Integrating the phase noise over frequency it can be shown that

which is the same as the power of a noiseless oscillator if AM
white noise is neglected .

Fig. 3 compares the AM, PM, and white
noise component of for a differential oscillator (intro-
duced in Section V). On a logarithmic graph the approximate
PM/AM Lorentzian spectra have corner frequencies given
by MHz and MHz
respectively. Since (PM noise) exceeds (AM noise) (by
20 dB in Fig. 3) is the corner frequency of the total

white noise spectrum.
The inflexion point at observed in the PM noise spectrum

is not easily observable in the total noise spectrum
due to the AM noise contribution. Agreement of the theory with
the circuit simulator is verified to be within 0.6 dB at high offset
frequencies for the circuit considered.

Both and are proportional to . For
a parallel tank, and is proportional to the tank



MUKHERJEE et al.: ANALYTIC CIRCUIT-BASED MODEL FOR WHITE AND FLICKER PHASE NOISE 1587

Fig. 3. Comparison of AM and PM white noise spectrum in a differential os-
cillator.

. This shows that at large offset frequencies is propor-
tional to , thus agreeing with Leeson’s model. However
the equation derived above presents the voltage noise in terms
of easily measurable parameters and in
conventional harmonic balance simulation of oscillators.

The presence of the additional terms in provides
greater accuracy in the expression for the Voltage noise density.
The ratio has to be as low as possible for reducing phase
noise

where is the angle between the complex vector and .
It results that when is 90 the noise correlation is minimized:

. When is 0 the noise correlation is maximized:
. This well known result was first inferred by

Kurokawa [8] from the inspection of . One of the con-
tributions of the present work for white noise is to introduce
the correlation factor and to quantify the impact
of the correlation on the overall phase noise spectra of
the oscillator. In the circuit considered, the correlation term is
verified in Fig. 2 to bring a shift on the order of 3.8 dB for
frequencies below .

Kurokawa [8] provided a graphical interpretation of the cor-
relation factor. In the limit where , (active devices con-
tributing minimally to the tank Q-factor), is the angle at the os-
cillator operating point between the locus of the device
admittance line as a function of and the locus of
the circuit admittance line as function of . Therefore,
in the limit where holds, the oscillator noise is respec-
tively maximized or minimized when the circuit and device ad-
mittances lines are tangent or perpendicular to one another.

For an ideal high Q parallel tank we have,
. In other words, to make

the ratio small the variation of device conductance and suscep-
tance with respect to amplitude should be very high and low
respectively. This is typically the case for active devices oper-

Fig. 4. Circuit for buffer noise modeling.

ating below . In Section V, we will show how the white noise
theory can be applied to a differential oscillator.

III. BUFFER NOISE

Most oscillator circuits have some kind of 2-port buffers to
stabilize the load impedance. This can range from a simple pad
attenuator to a differential output buffer stage as in the circuit to
be considered in Section V. The impact of a 2-port buffer on the
oscillator is usually not discussed in detail in the literature. Also
most simulators neglect the presence of a noise floor introduced
by the buffer in the output and shows the noise decreasing infin-
itely with increasing offset frequency.

Consider the noisy 2-port equivalent circuit for the buffer
circuit shown in Fig. 4 which features the usual input-referred
noise current and noise voltage .

Using the results given in Appendix V the Norton equivalent
noise current injected by the buffer network in the oscil-
lator circuit is given by

with

and

It results that the noise current power density injected by
the buffer in the oscillator is

where is the correlation admittance . In these ex-
pressions, is the uncorrelated component and the correlated
noise component of the total buffer noise current .
The load noise and the buffer noises can themselves be
expressed as

and

Thus, an additional component gets added to

in the total and the definition of changes to
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Fig. 5. Impact of buffer white noise on the voltage-spectral density
S =jA j of a differential oscillator.

The equivalent voltage noise source appearing at the input
contributes directly to the input-referred noise floor. The total
noise at the output of the buffer including the buffer noise is
then

where is the voltage gain provided by the buffer

(i.e., ) is usually the leading term contributing to the noise
floor in high-Q LC oscillators. The impact of the noise floor is il-
lustrated in Fig. 5 for a buffer noise floor of 130 dBV with two
different white noise strengths of A Hz
(unusually strong white noise) and A Hz
(normal weaker white noise). The corner frequency between
white noise and noise floor is given by

Note that for white noise of usual strength is on the
order and therefore should indeed be used instead
of in the frequency range where white noise
dominates. Note also that of the 6-dB offset between model
(plain line) and simulator results for , 4 dB are due
to the new correlation factor.

IV. EXTENDING THE MODEL TO FLICKER NOISE

In order to extend the Kurokawa analysis to noise we can
study the effect of a variation of the dc current
in any oscillator component, upon the active admittance .

Using a linearization scheme similar to the one we employed in
the white noise case we get (defining )

(9)

With the additional derivative term at the end, the master
equations become

(10)

(11)

where the new constant and are given by

with

will be defined by its power density
in the next section.

A. Solving the Differential Equations and Obtaining the
Expression for the Voltage Noise Density

We use the autocorrelation function of the charge trapping
model of the flicker noise to find the final noise voltage den-
sity as shown in [17]. The goal is to obtain a stationary model
of flicker noise. We first assume the autocorrelation function is
wide-sense stationary (WSS) and equal to (Ornstein–Uhlenbeck
assumption [13])

(12)

Taking the Fourier transform of gives the noise density
as

(13)

This autocorrelation corresponds to a random telegraph
noise which has a Lorentzian distribution. A superpo-
sition of many of these processes with time constants

which are spatially varying with
position in the oxide (MOS) or wide-bandgap region (HFET),
will result in a noise process with a distribution

for
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where , and
. The superposition is valid since we assume the different

traps behave independently.
We take the Fourier transform of (10) and (11) and express

the RHS of each equation in a simplified form.

(14)

(15)

From (14) we obtain

(16)

Note that we have used the expression for from (13) to
calculate . From (15), we get

(17)

The expression above can be simplified as

(18)

with, , ,
, and

. Decomposing (18) into partial fractions we obtain

(19)

where , , and
. From which we obtain

(20)

with for a single trap
. Equation (16) can be expanded into partial fractions

as

(21)

where and . Taking
the inverse Fourier transform of , we obtain

(22)

The resulting is given by

(23)

As shown in Appendix VII using the method of stationary
phase the Fourier transform of for large offset fre-
quencies is given by (using a ssb representation)

This expression gives the noise-spectral density at large offset
frequency for a single trap (i.e., for a particular value of ). Note
that Appendix VII can be applied to derive the PM component
because the terms , , and which can be identified for a
single trap in verify thus satisfying
the required property .

The IEEE definition of phase noise for noise is
obtained with the summation of the single-trap phase noise over
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all traps

Similarly, before we calculate and we need to
evaluate the autocorrelation and by sum-
ming over all traps. These integrations yield closed form expres-
sions for and [see (24)]. These analytic
solutions are quite useful for verification purposes and we shall
use them to obtain the exact voltage noise density by
calculating numerically the Fourier transform of

(24)

An analytic expression for valid for large offset fre-
quencies can also be obtained using the method of stationary
phase. This is due to the fact that the key assumption made in
Appendix VII namely still holds when summing
(integrating) over all the traps. It results by applying the results
of Appendix VII that for large enough offset frequencies the
voltage noise density of flicker noise is simply obtained by aver-
aging over all values of the expression obtained for the voltage
noise density of a single trap contribution

Fig. 6. Comparison of analytic expression for AM+PM and AM with exact
numerical solution and simulator results.

where and . In the limit of
and this reduces to

(25)

Fig. 6 shows the analytic expressions obtained for
noise (plain line) and for AM noise (dotted line). The

test circuit used is the differential oscillator to be discussed in
Section V. The voltage noise spectra reported are for noise
originating in the tail transistor (Mode E). Also shown in Fig. 6
are the results obtained for noise (dashed line)
for the uncorrelated case . Clearly correlation can play
an important role for mode E as it leads to a 30-dB decrease in
noise in the region.

At low offset frequencies (here below 1 Hz) the stationary
phase approximation fails as indicated by the exact numerical
results (circles). A simple estimate of the ceiling voltage noise
density and corner frequency
can be obtained by enforcing power conservation and assuming
a spectrum up to the corner frequency

with

Agreement with circuit simulation is only of 7 dB for mode
E. Better agreement will be obtained for other dominant
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Fig. 7. Differential oscillator with buffer stage.

modes (A and C) in Section V when correlation brings a weaker
correction.

V. COMPARISON OF PROPOSED MODEL WITH A PRACTICAL

DIFFERENTIAL OSCILLATOR

Let us consider the differential oscillator shown in Fig. 7. The
tank is selected to form the linear part of the oscillator while the
remaining of the circuit forms the nonlinear part.

A. Mode Analysis of the Oscillator

The Kurokawa analysis is typically used in harmonic balance
simulators for calculating the oscillator operating point
using . Consequently the various
nonlinear device and linear tank admittances are readily avail-
able for applying the circuit based noise model presented above.
However a method for calculating the equivalent noise source
appearing across the tank is needed to apply the noise theory
developed in the previous sections for the white noise analysis.
The methodology introduced for this purpose will also facilitate
the analysis by reducing the number of independent modes
(noise sources) considered from 5 to 3.

Fig. 7 shows the schematic of a simple differential oscillator
having four ‘core’ transistors. and represent the noise

produced by pMOS transistors while and represent the
noise produced by the nMOS transistors. Note that for white
noise the gate and drain noise currents (see for example [14])

and

of opposite nMOS and pMOS transistors (n1 and n2 or p1 and
n2) appear in parallel due to the circuit topology such that we
have for example . For the rest of the analysis
we define and . For
noise we similarly have and

.
The first step for the mode analysis is to split the instanta-

neous noise currents of the four transistors into uncorrelated unit
mode currents.

Let be the matrix which converts the transistor noise cur-
rents into these uncorrelated mode currents, i.e.,

Fig. 8. Modes B and D for a differential oscillator. These two modes inject a
noise current i directly across the tank.

where and are given by

and (26)

Since consists of uncorrelated mode currents having unit
power density, we have

It can be shown that a possible matrix is given by

(27)

with , ,
. Reversely we have with

given by

where, , and are given by

We have now expressed in terms of a certain number
of uncorrelated unity strength mode currents. Fig. 8 shows the
schematic representation of modes B and D.

As seen from Table I when the noise currents are substituted
by a single tone perturbation, each mode contributes differently
to the noise current injected across the tank by either up-con-
version or direct transfer. For modes A and C the largest contri-
bution to the current across the tank at is coming
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TABLE I
RESPONSE IN DECIBEL VOLTS OF THE TANK VOLTAGE AT f + �f TO

A SINGLE TONE EXCITATION INJECTED IN THE CIRCUIT WITH 1-kHz AND

(1-MHz) OFFSET �f FROM VARIOUS HARMONICS nf

from the up-conversion of the input currents at . For
modes B and D the largest contributions to the current in-
jected across the tank at is coming from the transfer
of the input currents at at . It results that modes
B and D are most significant for white noise and modes A and
C are most significant for noise. The tail current leakage of
each of the individual mode noises is verified to be usually in-
significant in a differential oscillator (the tail current source acts
as an open for modes A to D).

As shown in Fig. 8, the resultant currents across the tank for
modes B and D are and respectively. The effect
of individual modes can be accounted by adding their relative
contributions to and , respectively, i.e., for white noise,

The resulting voltage noise density obtained will be the same
as the one we previously reported in Section II if is replaced
now by

If we consider the total flowing across the tank due to
modes B and D, we get

For white noise this result is the same as the noise current den-
sity across the tank given in [16]. For noise we need to cal-
culate and for mode A and
C. One can select to be 2 and for mode A and C, re-
spectively. For mode C, if we calculate and

using nA for the two top
current sources in Fig. 8, then the two bottom current sources
are given by nA. Note
that for noise is frequency independent.

Note that our model neglects the frequency dependence of the
oscillator on the perturbating current . As can be verified in
Fig. 9, this is a reasonable assumption up to 1-MHz offset for
the differential oscillator considered in this paper.

B. Impact of Tail Noise

For completeness we need to consider the impact of tail noise
on the overall voltage noise density. We refer to the tail noise
analysis as Mode E. However unlike the previous modes, the

Fig. 9. Impact of the tank voltage at f +�f of a 1-nA perturbation current
at various offsets �f for Mode A through E.

noise current of the tail current is directly the mode current.
Table I shows the effect of a single frequency tone with 1-kHz
and 1-MHz offset relative to dc, , and , respectively. The
results are similar to those obtained for cases A and C. In other
words, the up-converted noise dominates over the transferred
noise.

C. Obtaining the Circuit Parameters and

The operating point GHz V for
the oscillator was obtained using conventional harmonic bal-
ance simulation. An accuracy of 0.1 Hz and 8 V was achieved.
The convergence accuracy of the voltage and current was set to

A and V, respectively, in the harmonic
balance simulations. Up to eight harmonics were used in the
harmonic balance simulations.

By changing about the operating point, can
be obtained. Similarly by changing about the operating point,

can be computed, which in turn leads us to .
A quadratic convergence of the derivatives calculated was ob-
served for shrinking derivative intervals. A least square fit was
further used to remove any residual numerical noise. The max-
imum error bound (e.g., ) in the
derivatives calculated was of in relative magnitude.
These derivatives can also be obtained from measurements of
the device and tank impedances [19].

D. Comparing the Various Modes

In our simulations we used for the noise sources
A and A which are within the

range specified for a standard CMOS process. For mode E we
used A . The various modes are com-
pared in Fig. 10. Mode A is found to be dominant for the cir-
cuit simulated and noise parameters selected. In the presence of
mismatches within the nMOS and pMOS transistor pairs mode
E could play a more prevalent role. Fig. 11 compares next the
model and simulator results when all modes are accounted
for. Agreement with noise simulation with our microwave cir-
cuit simulator is reasonable within the range of validity of the
simulation.
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Fig. 10. Comparison of 1=f modes A, C, and E.

Fig. 11. Comparison of model and simulator results for the AM andAM+PM
1=f noise for all modes summed (A+C+E).

VI. COMBINED WHITE AND NOISE

Here, we consider both white and flicker noise together. As
we have already seen when studying white noise and flicker
noise to properly evaluate the combined effect of multiple inde-
pendent noise processes on the oscillator output voltage-spectral
density we must first sum their respective phase and amplitude
autocorrelations

before calculating the voltage-spectral density . The com-
monly used approach which consists of summing the voltage-
spectral density of white noise and flicker noise

is an approximation. As we shall demonstrate below, the validity
of this approximation will depend on the relative strengths of the

noise and white noise processes.

Fig. 12. Comparison of the Voltage noise densities when white and flicker
noise summed (circle, square, star) with flicker noise (plain line) and white
noise (dashed line, dashed dotted line, dotted line) for three different white noise
levels.

Consider the two corner frequencies
and at which the voltage-spectral

density reaches its ceiling value when respectively considering
white noise or flicker noise separately.

When the corner frequency of white noise
is larger than the corner frequency of flicker
noise then no region will be present in the
noise spectrum since the ceiling dictated by power conserva-
tion has already been reached. This is numerically verified to
take place in Fig. 12 in the presence of a strong white noise

A Hz when the total voltage density
(circles) follows the white noise Lorentzian spectra and not the
flicker noise spectra. Clearly in this strong white noise case the
usual summation of the voltage-spectral density of white noise
and flicker noise would lead to incorrect noise spectra predic-
tion. Although the impact of noise would not be detectable
in the voltage noise spectrum, it will be detected in

and which can be measured using a phase de-
tector.

On the other hand if the corner frequency
is smaller than the corner frequency then the

region will be observed in the voltage noise
spectrum. This is the case in Fig. 12 in the presence of the
weaker white noise and

when the total (white flicker) voltage densities (tri-
angle) follow first the flicker noise spectra at low offset
frequencies before switching at high offset frequencies to the

noise spectra. In such a case the corner frequency be-
tween the and regions is given by (assuming
mode A dominating)

The usual summation of the voltage-spectral density of white
noise and flicker noise is then an excellent approximation. In
summary the simple rules described above for combining noise
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processes permit us to predict the total noise spectrum from the
analytic models without resorting to numerical analysis.

VII. CONCLUSION

In this paper, we have presented an extension of the Kurokawa
theory of oscillators to more accurately model white noise and
to apply it to flicker noise. The proposed model takes into ac-
count correlations existing between the amplitude and phase
voltage noises at the tank (embodied by the and factors).
Approximate analytic expressions were derived for the voltage
noise spectra. These analytic expressions were verified to hold
for a wide range of frequencies using both numerical analysis
relying on the exact solution and by comparison with an
harmonic balance simulator for a differential oscillator. For this
purpose a mode theory of noise was developed to facilitate the
calculation of the various Kurokawa noise parameters needed.
This mode theory also provides valuable insights in the various
noise up-conversion/transfer processes. The impact of the buffer
on the oscillator was also accounted for. Finally rules for com-
bining various uncorrelated noise (e.g., white and flicker) were
presented and verified with numerical simulation.

The theory presented here is certainly not without its own lim-
itations. The circuit was assumed not to be afflicted by strong
memory effects (very low frequency dc to RF frequency dis-
persion) besides traps. This facilitated the obtaining of an ana-
lytic solution for noise. Our derivation focused principally
on PM phase noise which is the dominant term compared to the
AM noise which was also derived. There exists however the pos-
sibility for a third type of combined AM-PM noise for strongly
correlated amplitude and phase noises. This noise would be sup-
pressed if the buffer acts an amplitude limiter. [4]. Note that the
expressions obtained for the IEEE phase noise definition
remain themselves unaffected by this approximation.

This circuit based-approach used also provides increased in-
sights in the noise processes. Specifically for white noise the
analytic model points towards the need to effectively reduce
the amplitude and phase noise correlation . Ac-
cording to the analytic models derived in this work, Leeson’s
formula for large offset frequencies should be updated to be (as-
suming , ,

and )

for

with , the resonator
and using for example

for the resonator buffer conductance.
Although more accurate formulas are given within the paper
this simplified expression should be useful to circuit designers

to identify device and circuit parameters which are critical for
phase noise optimization.

APPENDIX I
DERIVATIONS OF EQUATIONS (1) AND (2)

Let us consider an admittance model of an oscillator as shown
in Fig. 1. The circuit behaves as an open at resonance and a short
for the harmonics. The voltage is then

with (28)

The current in the nonlinear part can be expressed as

(29)
Similarly, the current flowing through the linear part is

(30)

Hence the current can be given by

(31)

We shall assume that the quantities and
are much smaller than . Performing a Taylor series expan-
sion in both and , multiplying then both sides of (31)
by and and finally integrating
each of those equations in time over one time period of oscilla-
tion we obtain the following relations

(32)

(33)

Note that we have used the steady state ( ,
and ) conditions

(34)

(35)



MUKHERJEE et al.: ANALYTIC CIRCUIT-BASED MODEL FOR WHITE AND FLICKER PHASE NOISE 1595

Equations (32) and (33) can be further simplified by noting that
for perturbative we can write

Hence (32) and (33) can be simplified as

The above 2 equations can be rewritten as

which are the required master equations. These equations are
the same as those derived by Kurokawa [8] except that we
have in addition accounted for the frequency dependence of
the beside its amplitude dependence via the new
coefficient (see (5)) replacing .

APPENDIX II
DERIVATIONS OF

The autocorrelation function of the oscillation at times and
is (as shown in [15])

(36)

This derivation assumes and are uncorrelated. This as-
sumption is often justified on the basis that the buffer acts as
a limiter which suppresses the fluctuation at its output. We
will be able to keep track of in this work to monitor its con-
tribution. If and are jointly normal
with zero mean and , then

where with the correla-
tion coefficient.

Taking, and , we get

with and . We get

Hence from (36), we have using

APPENDIX III
DERIVATION OF AND

If we assume (1) and (2) hold for all time (oscillator on for a
long time) and and are stationary processes then

and are also themselves stationary [18]. Taking the
Fourier transform of the (1) and (2), we get

(37)

(38)

From (37), we get the amplitude variation-spectral density

using [8]. is then

(39)

From (38), we get the following expression for :
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This result is in agreement with [20] for the uncorrelated and
case . Note that the general solution of (38) is valid

up to an arbitrary impulse

(40)

The impulse weight is selected so as to satisfy the nonzero
boundary condition of . By taking the inverse
Fourier transform of the (40) we obtain for the correlated case

Here, we have used the relation
. These results have been

computed using the following inverse Fourier Transforms pairs

and

APPENDIX IV
DERIVATION OF FOR WHITE NOISE CASE

Given the value derived for and we obtain

Now taking the Fourier transform of the above equation and pro-
ceeding along the method of stationary phase (see Appendix VI
for the calculation of the Fourier transform of an exponential of

Fig. 13. Conventional noise model: (a) for a 2-port circuit loaded with an output
noise source v and (b) its equivalent input-referred representation.

an exponential), we obtain

(41)

where , and
. Since is very high compared to , those

terms containing it in the denominator have been neglected.

APPENDIX V
INPUT REFERRED LOAD NOISE

Consider the two circuits shown in Fig. 13. One readily ver-
ifies that the voltages and can be expressed in terms of

, and using the following relation:

and

APPENDIX VI
FOURIER TRANSFORM OF WITH EXPONENTIAL OF

EXPONENTIAL: WHITE NOISE CASE

Let us consider having a form as follows:

where . Taking the Fourier transform of we get for
the result given in (42) at the bottom of the page.

(42)
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The terms within the integration sign can be neglected since
they become negligible for higher frequencies (method of sta-
tionary phase). Hence, the final expressions become

for (43)

For our purpose, , ,
and . As a result

(44)

For white noise, we need the following Fourier transform:

(45)

At RF frequencies becomes very large and hence
the second term becomes quite small compared to the first and
can be neglected in an ssb representation

APPENDIX VII
FOURIER TRANSFORM OF WITH EXPONENTIAL OF

EXPONENTIAL: FLICKER NOISE CASE

Consider a function of the following form:

with and (46)

We wish to calculate its Fourier transform shown in the equation
at bottom of page.

Integrating by parts twice, we get for the result shown in
(47) at the bottom of the page. The terms within the integration
sign will vanish in the limit because they are rapidly
varying functions of time (method of stationary phase). So
becomes

(47)
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For noise we need the following Fourier transform:

At RF frequencies becomes very large and hence
the second term becomes quite small compared to the first and
can be neglected in a ssb representation
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