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Abstract

In 1966, D.B. Leeson presented his model on phase noise in a letter entitled A

Simple Model of Feedback Oscillator Noise Spectrum. This model usually requires

an additional effective noise figure in order to conform with measured results. (This

effective noise figure has to be determined by means of curve-fitting Leeson’s model

with the measured results.) The model is, however, relatively simple to use, com-

pared with other more accurate phase noise models that have since been developed

and which can only be solved numerically with the aid of computers. It also gives

great insight regarding component choices during the design process.

Therefore several experiments were conducted in order to determine conditions under

which Leeson’s model may be considered valid and accurate. These experiments, as

well as the conclusions drawn from their results, are discussed in this document.
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Opsomming

In 1966 stel D.B. Leeson sy faseruis model bekend in ’n brief getiteld A Simple

Model of Feedback Oscillator Noise Spectrum. Hierdie model vereis gewoonlik die

gebruik van ’n bykomende effektiewe ruissyfer, sodat die model ooreenstem met die

gemete resultate. (Hierdie effektiewe ruissyfer kan slegs bepaal word deur middel van

krommepassings tussen Leeson se model en die gemete resultate.) Die model is egter

relatief eenvoudig om te gebruik in teenstelling met ander, meer akkurate, faseruis

modelle wat sedertdien ontwikkel is en slegs met behulp van rekenaars opgelos kan

word. Dit bied ook onoortreflike insig ten opsigte van komponent keuses tydens die

ontwerpsproses.

Om hierdie rede is verskeie eksperimente uitgevoer met die doel om toestande te

identifiseer waaronder Leeson se model as geldig en akkuraat geag kan word. Hierdie

eksperimente, asook die gevolgtrekkings wat van hul resultate gemaak is, word in

hierdie dokument behandel.
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Chapter 1

Introduction

Electronic oscillators are used as time references in a wide variety of applications

ranging from radar to communication systems. The need for greater oscillator sta-

bility is becoming ever more pertinent: Quadrature amplitude modulation (QAM)

communication systems such as WiMAX require very stable local oscillators (LOs),

since the data is modulated onto the carrier by varying both amplitude and phase.

Undesired variances in amplitude or phase as a result of noise would therefore place

a fundamental limit on the achievable bit rates. This implies that the greater the

stability of the LO, the greater the bit rate that can theoretically be achieved in a

given channel. This statement holds true as long as the thermal noise limit is not

reached.

When considering radar applications, on the other hand, a noisy LO can impair the

detection threshold of the system. This is especially true in the case of continuous

wave (CW) radars, but also for pulse radar systems such as MTI or MTD radars.

This is due to the fact that clutter suppression is limited by phase noise. Clutter

suppression entails echoes of sequential measurements being subtracted from each

other. Should there be any variation in the carrier wave’s phase during the time

between the sending of the signal and the reception of the echo, the result would be

that stationary targets would no longer be eliminated. This would imply an increase

in the radar’s detection threshold. In CW radar applications, the phase noise of

a large reflected signal can also increase the system’s noise threshold, making it

impossible to detect small targets at long range. Phase noise can also lead to an

error in the Doppler frequency. The problem intensifies for radially slow-moving

targets.

Phase noise, which manifests as jitter in the time domain, can also lead to sinchro-

nisation problems and bit errors in digital systems.

1
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These are but a few examples. In this document the phase noise performance of

oscillator circuits and the effects of the linearity of the circuits themselves on this

performance will be investigated.

1.1 Problem Statement

When designing an oscillator for low phase noise, as with the design of most elec-

tronic circuits, it is often easiest to start off with a linear model in order to develop

greater insight into the problem. Such a phase noise model was presented by D.B.

Leeson in 1966, using a heuristic approach. His model is linear time-invariant in

nature and is still one of the phase noise models most widely used by oscillator de-

signers today. This is irrespective of the fact that other phase noise models, which

are nonlinear time-variant or linear time-variant and which are much more accurate,

have been developed. This can be attributed to the fact that with the methods of

the newer phase noise models, the effect of individual components within the system

(transistors, resistors, inductors, etc.) upon the system’s phase noise is lost within

layers of obscurity. These phase noise models (LTV and NLTV models) are also

usually only solvable by means of numerical computer simulations, which negates

approaches to design by hand.

As has just been mentioned, Leeson’s model is not as accurate as the LTV and

NLTV models and usually requires the addition of an effective noise figure in order

to conform with measured or simulated phase noise. However, given the insight

that Leeson’s model provides into a component choice with regard to its effect on

the oscillator’s phase noise performance, it stands to reason that the circumstances

under which this model is indeed valid should be defined. Another point to evaluate,

is how quickly, and under which conditions, the model becomes invalid.

In the following chapters the author will attempt to determine just that: The condi-

tions under which Leeson’s model may be considered as valid and accurate will be

investigated and verified by means of a set of experiments.

1.2 Organisation of Thesis

In Chapter 2, basic principles concerning the functioning of oscillators as well as a

few oscillator properties are discussed.

Chapter 3 deals with phase noise. It illustrates how phase noise could be described as

a random FM or PM signal modulated onto a carrier. The phase noise distribution is
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also described, along with a detailed discussion on the derivation of Leeson’s model

for phase noise.

In Chapter 4 an experiment concerning the effect of circuit non-linearity on the

oscillator’s phase noise performance is outlined and evaluated. In particular, the

effect that the linearity of the circuit has on its effective noise figure is assessed. It is

also demonstrated that the magnitude of the output signal level increases with circuit

non-linearity. It is found that Leeson’s model describes an oscillator’s phase noise

distribution with increasing accuracy as the circuit approaches linear operation. A

hypothesis is made that, should a linearly driven oscillator have an output signal

similar in magnitude to that of a nonlinearly driven oscillator, the linearly driven

oscillator will show superior phase noise performance. In Chapter 5 this hypothesis

is evaluated and confirmed.

Chapters 6 and 7 evaluate the phase noise of, respectively, an LC oscillator network

and a crystal oscillator network, as the level of amplifier saturation is adjusted in

steps of approximately 0.1dB. In both cases the measured phase noise is approxima-

ted using Leeson’s phase noise model. The loaded quality factors of the resonators

are used to determine the Leeson frequency in both experiments. In Chapter 6,

the resonator’s bandwidth is used to determine the Q, whereas in Chapter 7, it is

determined using the group delay of the resonator.

The experiments of Chapters 8 and 9 are similar to those discussed in Chapters 6

and 7, but differ from these in that the network’s open loop group delay instead of

the resonator’s bandwidth, is used in order to determine the Leeson frequency.

Chapter 10 completes this thesis by reflecting upon the conclusions drawn from these

experiments and suggests a low phase noise oscillator design procedure.



Chapter 2

An Introduction to Electronic

Oscillators

2.1 Introduction

An oscillator is a circuit that converts direct current (DC) power into a periodic

alternating current (AC) waveform with a fixed frequency[1]. The basic frequency

domain block diagram of a linear oscillator is shown in figure 2.1. The figure shows

the conceptual operation of a sinusoidal oscillator in terms of a linear amplifier with

linear feedback between its output and input ports. The amplifier has a gain of A

and an output voltage V out (s). From the block diagram we see that the output

Figure 2.1: Basic oscillator block diagram

4
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voltage can be written as:

Vout (s) = AVin(s) +H (s)AVout (s) (2.1)

where V in (s) and V out (s) are the Laplace transforms of the time domain input and

output signals respectively. Equation 2.1 can be rewritten in the form:

Vout (s) =
A

1− AH (s)
Vin (s) (2.2)

From equation 2.2 it can be deduced that, should the denominator of this equation

become zero at a certain frequency, f0 (when AH (j2πf0) = 1), a non-zero output

voltage could be obtained, given a zero input voltage. (At this oscillation frequency

s = j2πf0) This is known as the Nyquist or Barkhausen criterion [1, 2]. This model

is, however, linear and does not allow for the output signal’s amplitude to be de-

termined. The amplitude of the output signal is usually governed by nonlinearities

in the active device. This is due to the fact that real-world active devices are only

capable of handling finite amounts of power before they are driven into saturation.

Once saturation sets in, the effective gain of the amplifier decreases until the oscil-

lator stabilises. It is, however, also possible to govern the output signal’s amplitude

by linear means. An example of this would be the filament of a light bulb, often

used in Wien bridge oscillator configurations. Therefore the criteria for oscillation

can be stated another way: Should an active two port device be provided with a

feedback path, an oscillation will occur if the signal being fed back is larger than,

and in phase with, the input signal. These oscillations will continue to grow until

saturation sets in or the effective loop gain is reduced to unity by other means[3].

Therefore the criterion for oscillation is that a feedback path must exist, providing

an open loop gain of at least unity and precisely zero (or n×360o, where n is an

integer) phase shift [3].

It is useful to note some of the more traditional oscillator circuit configurations, such

as those shown in figure 2.2, even though this document will not be evaluating their

designs [1, 4, 5, 6]. Also note that all oscillator circuits can be made to fit the block

diagram of figure 2.1.

Oscillators may also be analysed by means of a negative resistance model, to which

any oscillator can be made to fit. This document will, however, be making use of

the previously discussed loop oscillator model, due to the insight it provides into the

working of the oscillator.
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Figure 2.2: The Colpitts, the Hartley and the Clapp oscillator configurations.

2.2 Oscillator Specifications

Oscillators are specified and characterised in terms of various properties. For the

purposes of this document, the most important of these properties is the oscillator’s

phase noise. This will be discussed in detail in the following chapter. Other impor-

tant properties are listed below. The list is incomplete and limited to the properties

most relevant to the purposes of this document.

2.2.1 Output Power

The signal power at the fundamental frequency of the oscillator, as measured with a

spectrum analyser at the oscillator’s output, is referred to as the oscillator’s output

power [4]. It is usually measured in dBm. The output power is relevant to the pur-

pose of this document since, as will be discussed in the following chapter, the phase

noise spectral density is measured relative to the output signal power in dBc/Hz.

2.2.2 Frequency Drift

Frequency drift or oscillator drift, as it is sometimes referred to, is the undesired

phenomenon by which the oscillation frequency is continuously changing. This will

occur over long periods of time and is then referred to as aging [4]. Oscillators may

also drift as a result of environmental changes, such as temperature changes in the

active device or resonator. It is important to note that temperature fluctuations may

also affect the load resistance of the oscillator, which could result in load pulling.

Another environmental change would be fluctuations in the biasing of the active

device, which will result in changes of in the oscillation frequency.

It is of interest that, should the previously mentioned environmental changes only

occur with regard to the active device and not affect the resonator (for example
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an oscillator with an ovenised resonator), the amount of drift would be inversely

proportional to the quality factor of the oscillator’s resonator.

Aging is measured over a specified time as the difference between the maximum and

the minimum frequency deviation. Mathematically it can be stated as: (fmax−fmin)

[Hz] during x amount of time.

2.2.3 Harmonic Distortion

When the amplitude of the input signal to the active device surpasses the active

device’s saturation level, the signal at the output of the active device is clipped.

As the input signal amplitude is increased, the active device is driven deeper into

saturation. This results in a decrease in effective gain at the fundamental frequency

f0 and the appearance of harmonics at frequency multiples of f 0 [2].

Second harmonic distortion is the ratio of the power magnitude of the second har-

monic to that of the power magnitude of the fundamental frequency component and

is measured in dBc [4]. High harmonic distortion indicates that the active device

has been driven deep into saturation. Note that the opposite is not necessarily true.

Should the oscillator’s output signal be obtained off the resonator through electro-

magnetic coupling, the resonator will act as a filter and suppress any harmonics that

may be present within the oscillator loop.



Chapter 3

An Introduction to Phase Noise

3.1 Introduction

Phase noise is a measure of a signal’s short term stability. This short term signal

stability is ordinarily measured over a period of time ranging from fractions of se-

conds to 1 second and sometimes up to a minute. It is often given as an integrated

number in RMS degrees or radians [7]. Oscillator phase noise is best described in

terms of power spectral density, SΦ (f), which is given in rad2

Hz
. It is usually plotted

on a logarithmic scale, in which case it is then given in dBc
Hz

. These notations are

equivalent in the sense that SdB = 10 log10 (S). A mathematical derivation will

follow soon.

In technical documentation phase noise is normally given as the quantity L(f). L(f)

is interchangeable with SΦ (f), since L(f) = 1
2
SΦ (f), which is always in dBc

Hz
[8],[2].

It refers to the ratio of single sideband (SSB) noise power in a 1 Hz bandwidth to

the total carrier signal power and is plotted against the frequency offset from the

carrier [7]. Note that SΦ (f) is a single sided spectral density due to the fact that

the Fourier frequency, f , ranges from 0 to∞. It does, however, include fluctuations

from both the lower as well as the upper sideband [8]. The relationship between

SΦ (f) and L(f), is illustrated in figure 3.1.

The term jitter should also be mentioned. It is related to phase noise in the time

domain and refers to variations in the time domain signal’s zero crossings [7].

8
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Figure 3.1: The relationship between SΦ (f) and L(f)

3.2 Phase Noise Modelled

Consider a time dependent oscillator output voltage signal to be of the form:

v (t) = V (t) cos (θ (t)) (3.1)

v (t) = V0 [1 + α (t)] cos (ω0t+ φ (t)) (3.2)

The instantaneous frequency of the signal, v (t), given in equation 3.1, can be de-

termined by the time derivative, dθ(t)
dt

. It is constantly changing with time and has

an average value of ω0. This implies that equation 3.1 can be expanded to the form

given in equation 3.2. In this equation ω0 is the fundamental or carrier frequency

in radians per second, α (t) is the fractional amplitude noise and φ (t) is the phase

noise. The unit of measure for φ (t) is radians, while α (t) is dimensionless. Both

of these are random variables [2]. If v (t) had been a noiseless signal, its spectrum

would ideally have been the Dirac function V0
2
δ (ω − ω0). In the presence of noise,

however, the spectrum broadens. This is due to the fact that the signal is being

randomly modulated in both amplitude and phase [7]. The broadened spectrum,

illustrated in figure 3.2, could be viewed as a series of closely spaced discrete side

bands.

Amplitude (AM) noise is normally much less than phase noise. AM noise usually

also has less of an effect on a system’s performance [7]. Therefore the AM noise can

be considered constant and the previously mentioned broadened spectrum will be

explained only as a result of phase noise, φ (t) [7].

Consider a frequency modulated (FM) signal with the following instantaneous fre-

quency deviation:

f (t) = ∆f cos (ωmt) (3.3)

Since phase is the time integral of frequency, equation 3.4 holds true and gives the
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f r e q u e n c y

A m p l i t u d e

c a r r i e r
f r e q u e n c y

Figure 3.2: Spectrum broadens as a result of phase noise

instantaneous phase deviation. This equation clearly illustrates that an FM signal

with a maximum frequency deviation of ∆f and a carrier frequency of f 0, will result

in a phase modulated (PM) signal at f 0 with a peak phase deviation of Φp, where

Φp = ∆f
f0

radians [7].

φ (t) =

∫
2πf (t) dt =

∆f

f0

sin (ωmt) = Φp sin (ωmt) (3.4)

In the absence of AM noise, and with V 0 set to 1, equation 3.2 can be reduced to

equation 3.5.

v (t) = cos (ω0t+ φ (t)) (3.5)

Equation 3.6 is obtained when equation 3.4 is substituted into equation 3.5.

v (t) = cos (ω0t+ Φp sin (ωmt))

= cos (ω0t) cos (Φp sin (ωmt))− sin (ω0t) sin (Φp sin (ωmt))
(3.6)

In the case of narrow band FM (an FM signal with a small modulation index), Φp

is very small. Should Φp be much smaller than 1, the following approximations may

be made:

cos (Φp sin (ωmt)) ≈ 1 (3.7)

and

sin (Φp sin (ωmt)) ≈ Φp sin (ωmt) (3.8)

Therefore, for a narrow band FM signal, equation 3.6 can be reduced to equation

3.9. This equation clearly illustrates that the carrier signal has two side bands with
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peak amplitudes of Φp
2

at a frequency offset of fm Hz or ωm radians [7].

v (t) = cos (ω0t)− Φp sin (ω0t) sin (ωmt)

= cos (ω0t) + Φp
2

cos ((ω0 + ωm) t)− Φp
2

cos ((ω0 − ωm) t)
(3.9)

As was noted previously, phase noise has a continuous spectral distribution. Should

this noise distribution be divided into 1 Hz intervals, the energy in each of these 1

Hz bands can be viewed as the result of an FM signal with a variation proportional

to the amplitude of the power spectrum at the offset frequency being considered.

Phase noise can therefore be modelled as a large number of random FM signals

around a single carrier, with their offset frequencies spaced 1 Hz apart.

3.3 Phase Noise Distribution

From the previous section, one might assume that phase noise would have a ho-

mogeneous distribution around the carrier. This is, of course, not the case. An

oscillator’s phase noise distribution is in fact largely determined by its resonator’s

response, as well as the noise inherent to its power source and active device, that

will inevitably enter the system. Various models exist to determine the phase noise

distribution [9, 10, 11, 12]; these will be discussed in the following sections.

The noise voltage or noise current power spectral density of the oscillator’s power

source and active device, can be considered to be as depicted in figure 3.3.a. It

has a predominantly white noise distribution, but a 1
f
-noise distribution (flicker

noise) will also be present at low frequencies. Due to the nonlinear operation of

the oscillator network, noise components situated at integer multiples(n) of the

oscillation frequency(f0), are transformed to low frequency noise sidebands in the

phase domain. These phase noise sidebands are in turn transformed to the power

spectral density of the oscillator’s output signal. SΦ (f) is obtained by means of

the superposition of all of the phase noise inputs that have been transformed from

device noise at n× f 0[10, 11].

Each of these phase noise inputs is weighted by a coefficient, kn. White noise

sources give rise to a 1
f2

dependency in the phase domain within the bandwidth of

the resonator, whereas 1
f
-dependent noise sources are transformed to 1

f3
-dependent

phase noise sources. Note that the previously mentioned frequency dependence is

i.t.o. the offset frequency with regard to the carrier frequency. (The mechanism

for the transformation is described in the following section.) Low frequency noise
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Figure 3.3: Conversion of voltage noise to phase noise

sources are weighted by the coefficient k0, while noise sources at positive integer

multiples of the oscillation frequency are weighted by coefficients kn [11, 10]. This

weighted transformation is illustrated in figure 3.3.

In linear time-invariant models, the weight of k0 dominates the phase noise distri-

bution and the remaining coefficients are ignored. Such a system is described by

Leeson’s model. (See section 3.4) Given the dominance of k0, it is obvious from

figure 3.3.b, that in linear time-invariant models, the 1
f3

- and 1
f
-corner frequencies

will coincide. This would not be the case were the phase noise to be modeled using

a linear time-variant model. In such cases, the effects of the other coefficients, kn,

become more discernable and the previously mentioned frequency-corners may occur

at different frequencies[10, 11]. Note also that an oscillator’s ultimate phase noise

can never be lower than the noise floor of the active device.

The effect of the resonator’s phase response on the phase noise distribution should

also be taken into account. In particular, the position of the resonator’s half power

bandwidth frequency (or half bandwidth frequency), f0
2Q

[Hz], with regard to the
1
f
-corner frequency, f c, of the device noise, Sψ. This is illustrated in figure 3.4,which

can be derived from the linear time-invariant model (LTI) discussed in the next

section. Figure 3.4 depicts the phase noise distribution of an oscillator should f0
2Q

be

smaller than f c (case 1), as well as for the case where f0
2Q

is greater than f c( case
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Figure 3.4: The effect of resonator BW on the oscillator’s phase noise distribution

2). This phenomenon will be explained in the following sections. In this section it

merely serves to illustrate the effect of the resonator’s bandwidth (and consequently

its Q) on the phase noise distribution. Notice the presence of a 1
f

dependency in

case 1, and a 1
f2

dependency in case 2 of figure 3.4.

At this point it may be noted that, in order to design an oscillator with low phase

noise, an active device with a low noise figure and a low flicker noise corner frequency

is needed. A resonator with a high quality factor will also have greater phase noise

suppression near the carrier frequency.

Only the effect of white noise and flicker noise entering the oscillator network have

been discussed thus far. It must be pointed out that, should noise with other distri-

butions, e.g. 1
f3

, enter the system, it would be subjected to the same transformation

that white and flicker noise are subjected to. Therefore oscillator phase noise can

be described by means of the following power law:

SΦ (f) = Σ−4
i=0bif

i (3.10)

It should be mentioned that equation 3.10 can be expanded by adding additional

negative terms [2]. The phase noise terms are shown in table 3.1. Phase noise

can also be described in terms of phase time fluctuation and fractional frequency

fluctuation given, respectively, in equations 3.11 and 3.12. Phase time fluctuations,

x (t), are the phase fluctuations, φ (t), converted into time and measured in seconds.

(This is sometimes called phase jitter.) Fractional frequency fluctuations are the

instantaneous frequency variations normalised with respect to the carrier frequency,
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f 0, and are dimensionless[8, 2].

x (t) =
φ (t)

2πf0

(3.11)

y (t) =
φ̇ (t)

2πf0

(3.12)

Their power spectral densities are given by equations 3.13 and 3.14 respectively[8, 2].

Sx (f) =
1

f 2
0

SΦ (f) (3.13)

Sy (f) =
f 2

f 2
0

SΦ (f) (3.14)

Equation 3.14 is derived from equation 3.12 using the Fourier transform property

that differentiation in the time domain maps to multiplication by j2πf in the fre-

quency domain. This implies that the spectrum has to be multiplied by 4π2f 2 [2].

Subsequently the power law given in equation 3.15 can be obtained. The individual

power spectral density terms of the frequency fluctuation power law are also shown

in table 3.1, along with a list of conversions between SΦ (f) and Sy (f) [2]. The

relationship between phase noise and fractional frequency fluctuation is graphically

illustrated in figure 3.5.

SΦ (f) = Σ−2
i=2hif

i (3.15)

Table 3.1: Power spectral densities of noise types

Noise Type SΦ (f) Sy (f) SΦ (f)←→ S (f)

White phase b0 h2f
2 h2 = b0

f20

Flicker phase b−1f
−1 h1f h1 = b−1

f20

White frequency b−2f
−2 h0 h0 = b−2

f20

Flicker frequency b−3f
−3 h−1f

−1 h−1 = b−3

f20

Random walk frequency b−4f
−4 h−2f

−2 h−2 = b−4

f20
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Phase Noise
Spectral
Density

Fractional
Frequency
Fluctuation

random walk frequency

flicker frequency

white frequency

white phase

flicker phase

random walk frequency

flicker frequency

white frequency

flicker phase

white phase

offset frequency

offset frequency

Figure 3.5: SΦ (f) and Sy (f)
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3.4 Leeson’s Equation (an LTI model)

3.4.1 A Heuristic Approach

Consider the variation on the basic oscillator network in figure 3.6. (The block

diagram shown is the same as the one in figure 2.1, but with a static phase shift

added.) H (f) is assumed to be an ideal resonator with no frequency deviations and

a high quality factor. The half power bandwidth of the resonator is given by πf0
Q

[4].

The half power bandwidth can also be expressed as 1
τ
, where τ is the resonator’s

group delay or relaxation time[2]. For example the impedance of a series RLC

resonator is:

Zseries (jω) = R + jωL+
1

jωC
(3.16)

The group delay of such a resonator may be calculated as follows: The circuit is

resonant when Zseries = R. This will occur at a frequency

ω0 =
1√
LC

(3.17)

The circuit’s quality factor can be calculated at this point to be

Q =
Lω0

R
(3.18)

By substituting equations 3.17 and 3.18 into equation 3.16, equation 3.19 can be

obtained, which has a first order bandpass response.

Zseries =

√
L

C

[
1

Q
+ j

(
ω

ω0

− ω0

ω

)]
(3.19)

The group delay of this bandpass response is given by

τ = −d arg Yseries (jω)

dω

=
d

dω
arctan

(
Q

(
ω

ω0

− ω0

ω

))

=
Q
(

1
ω0

+ ω0

ω2

)
Q
(
ω
ω0
− ω0

ω

)2

+ 1

where Yseries = 1
Zseries

. 1

1Yseries is used instead of Zseries, due to the fact that Yseries has a pair of complex poles on
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For the case where ω = ω0, the group delay reduces to

τ0 =
2Q

ω0

(3.20)

From equation 3.20, it can be seen that the quality factor can be expressed in terms

of the group delay. Mathematically it may be stated

Q =
ω0τ0

2

= πf0τ0

(3.21)

The previous derivation shows that the group delay is directly related to the quality

factor for a simple RLC resonator. Group delay may, however, be considered to

be a more fundamental characteristic of the resonator, since it can be applied to all

resonators and is easy to measure. For example group delay may be applied to delay

line resonators where the quality factor has no meaning.

Figures 3.6 and 3.7 show how the frequency of an oscillator network can be pulled by

adding a static phase, ψ, into the loop. As was mentioned previously, the Barkhausen

conditions for oscillation are closed loop gain of unity while simultaneously achieving

a 0o phase deviation. Figure 3.7 illustrates how these conditions can be satisfied

across multiple frequencies for the same resonator. By adding additional phase to

the loop, the frequency at which the phase condition is satisfied, is shifted. As long

as the gain condition is also being satisfied at this shifted frequency, the network

will oscillate at the shifted frequency [4, 2].

Figure 3.6: Variation on basic oscillator block diagram

In mathematical terms: the oscillator will oscillate at a frequency of f 0 + ∆f when

equation 3.22 holds true. f 0 denotes the resonant frequency of the network in

the absence of the static phase. ∆f denotes the amount by which the oscillation

frequency of the network is shifted should a static phase be added.

the imaginary axis and would result in a decreasing phase and a positive group delay. Zseries has
a pair of complex zeros on the imaginary axis and will therefore have a resulting negative group
delay.
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Figure 3.7: Amplitude and phase conditions for oscillations

arg [H (f)] + ψ = 0 (3.22)

this can be rewritten in the form

ψ = − arg [H (f)] (3.23)

The effect of ψ on the oscillation frequency can be obtained by inverting equation

3.23 and using linearisation to arrive at equation 3.24 [2]

∆f =
−ψ

d
df

arg [H (f)]
(3.24)

Should the static phase, ψ, be replaced with a randomly varying phase ψ (t) that

accounts for all the phase noise sources in the loop, the oscillator in figure 3.6 would

have the following voltage output signal:

v (t) = V0 cos [ω0t+ Φ (t)] (3.25)

where ω0 = 2πf0 and Φ (t) is the effect of ψ (t)[2]. In the following paragraphs, the

mechanism by which the power spectral density of ψ is converted to that of Φ will
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be analysed.

For the slow moving components of ψ (t), slower than the half power bandwidth of

the resonator, ψ may be treated as a quasi-static perturbation [2, 4]. This implies

that:

∆f =
f0

2Q
ψ (t) (3.26)

therefore

S∆f (f) =

(
f0

2Q

)2

Sψ (f) (3.27)

The instantaneous output phase would be given as

Φ (t) = 2π

∫
(∆f) dt (3.28)

Since time domain integration maps to multiplication by 1
jω

in the Fourier transform

domain and consequently to multiplication by 1
(2πf)2

in the spectrum domain, the

oscillator’s spectrum density is given by equation 3.29 [2, 4].

SΦ (f) =
1

f 2

(
f0

2Q

)2

Sψ (f) (3.29)

For fast varying changes in ψ (t), faster than the half power bandwidth of the re-

sonator, the resonator acts as a band stop filter for ψ. This means that any fast

component of ψ (t) that enters the amplifier in figure 3.6, is passed straight through

to the output without being affected by the resonator. This is mathematically stated

as

Φ (t) = ψ (t) (3.30)

This implies that

SΦ (f) = Sψ (f) (3.31)

Assume that no correlation exists between the slow and fast moving components of

ψ (t). This implies that the effects of equations 3.29 and 3.31 can now be summed.

This leads to the Leeson equation for phase noise:

SΦ (f) =

[
1 +

1

f 2

(
f0

2Q

)2
]
Sψ (f) (3.32)
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which can be rewritten in the form

SΦ (f) =

[
1 +

f 2
L

f 2

]
Sψ (f)

where

fL =
f0

2Q
(3.33)

Equation 3.33 is sometimes referred to as the Leeson frequency [2].

Inspection of the Leeson formula (equation 3.32), indicates that oscillator behaviour

is similar to that of a first order filter with a pole at the origin in the Laplace

transform domain and a cutoff frequency at fL (zero on real axis on left-hand side).

It should be noted that the Leeson equation explains only those phase to frequency

transformations that are inherently inside the loop illustrated in figure 3.6. The

noise of the resonator must still be taken into account.

3.4.2 A Mathematical Approach

Leeson’s formula can be mathematically deduced in the following manner [2]. Let

b (t) be the phase transfer function of the resonator with B (s) its Laplace transform.

Let the resonator be driven with a sinusoidal signal with a frequency of ω. This may

be any frequency, including the natural frequency of the resonator. Under quasi-

static conditions, the phase transfer function, b (t), is the resonator’s phase response

to a phase impulse function, δ (t), in the input signal [2]. Mathematically this can

be written as

vi (t) = cos [ω0t+ δ (t)] (3.34)

vo (t) = cos [ω0t+ b (t)] (3.35)

The response to the unit step function, U (t), can be used to derive b (t), since it is

a characteristic of linear systems that the impulse response, b (t), is the derivative

of the step response, bU (t). In mathematical form

b (t) =
d

dt
bU (t) (3.36)

The response for small signal conditions is evaluated by making use of a phase step,

κU (t), with κ → 0. The unit step function can be defined as U (t) = 0 for t < 0
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and U (t) = 1 for t > 0, or:

U (t) =

∫ ∞
−∞

δ (t) dt (3.37)

The approximation for κ may be considered accurate, since the phase noise in an

oscillator is indeed a small signal. In the following method the input signal, vi (t),

is split into two terms at t = 0.

vi (t) = v
′

i (t) + v
′′

i (t) (3.38)

where, for t > 0,

v
′

i (t) = vi (t)U (−t) (signal off) (3.39)

v
′′

i (t) = vi (t)U (t) (signal on). (3.40)

Consequently, the resonator’s output phase response can be written as:

vo (t) = v
′

o (t) + v
′′

o (t)

where v
′
o (t) is the response to v

′
i (t) (the signal switched off) and v

′′
o (t) is the response

to v
′′
i (t) (the signal switched on) for t > 0. The splitting in two of the input signal

allows for the insertion of κU (t) into the phase of v
′′
i (t) [2].

Now consider the phase response of a resonator with an input signal tuned to its

exact resonance frequency. The input signal can be written in the form shown in

equation 3.41.

vi (t) = cos [ω0t+ κU (t)]

= cos (ω0t)U (−t) + cos (ω0t+ κ)U (t)
(3.41)

The last two terms of equation 3.41, are depicted in figures 3.8.a and 3.8.b [2]. The

resonator response for the sinusoidal input signal switched off (figure 3.8.a), is the

exponentially decaying signal given in equation 3.42, which holds true for t > 0.

Where again τ = 2Q
ω0

.

v
′

o (t) = cos (ω0t) e
−t
τ (3.42)

For the sinusoidal input signal switched on, the resonator has an exponentially in-

creasing response. This is given by equation 3.43, which is valid for t > 0.

v
′′

o (t) = cos (ω0t+ κ)
[
1− e

−t
τ

]
(3.43)
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Envelope Envelope

a b

C d

Figure 3.8: Decomposition of resonator input signal and resulting response

Equations 3.42 and 3.43 are, respectively, illustrated in figure 3.8.c and figure 3.8.d.

For a sinusoidal input signal at the exact resonance frequency of the resonator, such

as the one given in equation 3.41, the resonator’s signal response will be given by

equation 3.44.

vo = v
′

o + v
′′

o (3.44)

Substituting equations 3.42 and 3.43 into equation 3.44, yields:

v0 = cos (ω0t) e
−t
τ + cos (ω0t+ κ)

[
1− e

−t
τ

]
which could be written in phasor form as:

Vo (t) = ej0e
−t
τ + ejκ

[
1− e

−t
τ

]
(3.45)

From the phasor definition ejκ = cos (κ) + j sin (κ), equation 3.45 can be expanded

to

Vo (t) = e
−t
τ + [cos (κ) + j sin (κ)]

[
1− e

−t
τ

]
(3.46)

since κ→ 0

Vo (t) ≈ e
−t
τ + [1 + jκ]

[
1− e

−t
τ

]
= 1 + jκ

[
1− e

−t
τ

]
(3.47)
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Figure 3.9: Oscillator block diagram in the phase domain

The phase variation of the signal at the output of the resonator will be given by

arctan
(
=Vo(t)
<Vo(t)

)
= κ − κe−tτ . Therefore the phase step response, bU (t), is given by

equation

bU (t) = 1− e
−t
τ (3.48)

which is the phase variation of the resonator’s output signal, normalised to κ. Uti-

lising equation 3.36, equation 3.49 is obtained [2].

b (t) =
1

τ
e
−t
τ (3.49)

As previously stated, B (s) is the Laplace transform of b (t). It can be obtained from

equation 3.49, using mathematical tables [13].

B (s) =
1

sτ + 1
(3.50)

Now consider an oscillator network in the phase domain. A block diagram of such

a network is illustrated in figure 3.9. The phase noise of the amplifier, as well as

resonator fluctuations, are modelled by Ψ (s), which could also represent the phase

of any external signal to which the oscillator is locked. Notice that the amplifier

in the block diagram, has unity gain. This correlates with the assumption that an

ideal amplifier will let any phase deviation at its input pass unhindered to its output.

From the block diagram it can be seen that the oscillator phase transfer function

would be given by equation 3.51

H (s) =
Φ (s)

Ψ (s)
(3.51)
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By applying simple block diagram algebra, equation 3.51, can be expanded to:

H (s) =
1

1−B (s)
(3.52)

In the case where the oscillation frequency of such a network is tuned to the exact

natural frequency of the resonator, equation 3.50 may be substituted into equation

3.52. Consequently equation 3.52 is reduced to:

H (s) =
sτ + 1

sτ
(3.53)

By substituting jω for s, the square of equation 3.53 can be written as:

|H (jω) |2 =
τ 2ω2 + 1

τ 2ω2
(3.54)

Now consider the spectral densities of Φ (t), namely SΦ (f), and ψ (t), namely Sψ (f).

From equation 3.51, it follows that

SΦ (ω) = |H (jω) |2Sψ (ω) (3.55)

By substituting equation 3.54 into equation 3.55, the following is obtained

SΦ (ω) =

[
1 +

1

τ 2ω2

]
Sψ (ω) (3.56)

Given that ω = 2πf and that τ = 2Q
ω0

= Q
πf0

, equation 3.57, Leeson’s equation, can

be derived from equation 3.56.

SΦ (f) =

[
1 +

1

f 2

(
fo
2Q

)2
]
Sψ (f) (3.57)

3.4.3 Conclusion

The above model was published by D.B. Leeson in 1966. It is linear time-invariant

in nature and therefore does not account for the nonlinear and time-variant nature

of oscillators, unlike linear time-variant (LTV) and non-linear time-variant (NLTV)

models. It is, however, relatively simple to calculate the phase noise distribution of

an oscillator network using this model. (LTV and NLTV models have to be solved

numerically with the use of computers.) Also, given the relationship between the
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components of the circuit and its quality factor, the effect of an individual component

on the oscillator’s phase noise can be determined.

Leeson’s model is usually inaccurate and requires the addition of an effective noise

figure. This effective noise figure is not to be confused with the noise figure of an

amplifier. It can be derived by curve-fitting the results of Leeson’s model upon a

phase noise measurement.

3.5 Conclusion

In this chapter the concept of phase noise was introduced. The method by which

it is created was explained and three models for determining an oscillator’s phase

noise distribution were mentioned. It was shown that Leeson’s model gives the best

insight as to the effect of physical components within the oscillator upon its phase

noise, but lacks the accuracy of the LTV and NLTV models. It is also much simpler

to implement.



Roadmap to Experiments

The following experiments evaluate the phase noise predicted by Leeson’s model and

compare it with the measured phase noise of various oscillators. The purpose, or

focus, of each experiment is discussed in the following paragraphs.

In Chapter 4, an experiment concerning the effect of circuit non-linearity on the

oscillator’s phase noise performance is outlined and evaluated. In particular, the

effect that the linearity of the circuit has on its effective noise figure, is assessed. It

is also demonstrated that the magnitude of the output signal level increases with

circuit non-linearity. It is found that Leeson’s model describes an oscillator’s phase

noise distribution with increasing accuracy as the circuit approaches linear operation.

A hypothesis is made that should a linearly driven oscillator have an output signal

similar in magnitude to that of a nonlinearly driven oscillator, the linearly driven

oscillator will show superior phase noise performance. In Chapter 5 this hypothesis

is evaluated and confirmed.

Chapters 6 and 7 evaluate the phase noise of, respectively, an LC oscillator network

and a crystal oscillator network, as the level of amplifier saturation is adjusted in

steps of approximately 0.1dB. In both cases the measured phase noise is approxima-

ted using Leeson’s phase noise model. The loaded quality factor of the resonators

are used to determine the Leeson frequency in both experiments. In chapter 6,

the resonator’s bandwidth is used to determine the Q, whereas in chapter 7, it is

determined using the group delay of the resonator.

The experiments of chapters 8 and 9 are similar to those discussed in chapters 6 and

7, but differ from them in that the network’s open loop group delay instead of the

resonator’s bandwidth is used in order to determine the Leeson frequency.

These experiments will now be discussed.
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Chapter 4

Experiment 1:

4.1 Purpose of the experiment

In the previous chapters it was noted that the nonlinear operation of oscillator

networks allows for the low frequency noise, present near DC, to be translated to

phase noise around the carrier. It was also shown that a similar process takes place

for noise present around integer multiples of the carrier frequency. In this experiment

the author proposes to evaluate how the measured phase noise distribution of an

oscillator network differs from that suggested by Leeson’s model when the linearity

of the network is altered. The experimental circuit layout is shown in figure 4.1.

The amplifier in the block diagram was designed to have a high gain. If the loop

gain of the circuit should be left unrestricted, the amplifier will quickly be driven

into saturation and the circuit will operate in a non-linear manner. Electric current

that flows in short pulses at the transistor’s collector is indicative of this mode of

operation. The circuit’s loop gain can, however, be limited by increasing the losses in

the attenuator shown in the block diagram. Should the attenuation be increased to

the point where the loop gain is near unity, the circuit will operate in a linear mode.

In this mode the electric current flowing through the collector should be sinusoidal,

perfectly following the output voltage. The aim of the following experiment is to

evaluate the system’s performance in terms of signal power, noise figure and phase

noise, as a function of system linearity. Previous experiments have been performed

in terms of drive level [4]. These experiments suggest that an oscillator’s phase

noise performance is improved by increasing the amount of feedback in the network.

However, they do not take into account the variations in the magnitude of the

oscillator’s output signal. In the following experiment the signal power is measured

at the input of the amplifier and is then related to the measured phase noise.
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A m p

W i l k i n s o n  P o w e r  D i v i d e r

A t t e n u a t o r

R e s o n a t o r

S i g n a l  O u t  

9 0  D e g r e e  P h a s e  s h i f t e r

Figure 4.1: Experimental circuit layout

Two near identical 5 MHz oscillator circuits were designed, the difference between the

two circuits being that one of the resonators was designed to be voltage controlled.

This is so that the oscillators can be locked to oscillate at exactly the same frequency.

One oscillator serves as a reference oscillator in order to measure the combined

phase noise of the two oscillators. The phase noise measurement procedure will be

explained later in this chapter.
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4.2 The design and characterisation of the

different circuit modules

A modular design was decided upon. This will enable characterisation and measure-

ment of each of the individual components or modules. It also allows for variation of

one circuit aspect without affecting any of the others, since all of the modules were

designed for a system with a characteristic impedance of 50Ω. In other words, any

change in the phase noise performance of the oscillator circuit is as a result of the

previously mentioned circuit change. This is true because the loading of the other

components remains unaltered.

In the following sections the various considerations for the design of each of the

different modules will be discussed. Most of these components are quite simple, they

must, however, be characterised accurately, especially in terms of gains or losses

and phase deviation, since this data will be used later on in system calculations.

Subsequently, both the simulated and measured results of these modules are shown

and compared in Appendix A.

4.2.1 Cascode amplifier

The amplifier’s purpose in this experiment is to deliver the necessary signal gain

to the system. It should be capable of driving the circuit into non-linearity with

ease if left unlimited. This would imply a gain of at least 20 dB. For this purpose

it was decided upon a cascode amplifier design. The design and verification of this

amplifier is discussed in Appendix A.1.

4.2.2 Wilkinson power divider

In order to perform the necessary measurements, a method is needed of diverting part

of the signal power to the measurement device without allowing the measurement

device to interfere with the experimental setup. In other words: the measurement

device must not be allowed to provide additional loading, or to deliver extra noise

to the circuit. Therefore the measurement port should be isolated from the rest

of the experimental setup. For this purpose it was decided to use a Wilkinson

power divider, since Wilkinson dividers inherently provide good isolation between

the output ports. They are further beneficial in that they allow for all ports to

be matched, unlike lossless T-junction dividers, and they do not have the losses
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associated with resistive power dividers[1]. An LC version of the Wilkinson divider

was designed and built, the design and verification of which is shown in Appendix

A.2.

4.2.3 Phase shift network

The power dividers add an additional 90o phase shift to the oscillator circuits, due

to their quarter wavelength characteristics. This can be seen in both the simulated

and measured results discussed in Appendix A.2 of the previously described module.

The results are illustrated in figures A.17 and A.21. In order to compensate for this

phase shift another 270o or -90o of phase deviation is required.

In Appendix A.2 it was mentioned that a quarter wave transmission line equivalent

circuit could be designed using an LC network. It is also possible to employ a similar

design in order to obtain a 3
4

wavelength transmission line equivalent. The design,

simulation and measurements of this module are discussed in Appendix A.3.

4.2.4 Attenuator

The purpose of the attenuator in the test setup is to limit the loop gain of the system.

This will allow for the evaluation of the oscillator circuit’s phase noise performance

at various levels of system linearity: The more closely the loop gain approaches

unity, the more linear the operation of the oscillator will be, since the active device

is not being driven as deeply into saturation as would otherwise be the case. The

attenuators should provide gain losses in the oscillator circuit while still remaining

impedance matched to the rest of the circuit. Otherwise stated: the attenuators

must have a characteristic impedance of 50Ω so as not to provide additional loading

to the oscillator system or cause signals to be reflected within this system.

For the purposes of the experiment a combination of Mini-circuits attenuators, shown

in Appendix B, as well as a few resistive π-attenuators, the schematic diagram of

which is shown in figure A.33, were used. Please note that the attenuator in this

figure is for a matched system. The design and verification of a few such attenuators

are discussed in Appendix A.4.

4.2.5 Resonator

The resonator is an integral part of any oscillator circuit, since it largely determines

the operating frequency of the circuit, as well as the frequency drift and the phase
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noise. Great care must therefore be taken when designing a resonator for a low

phase noise oscillator. Arguably the most important consideration to be made when

designing a resonator is in terms of its quality factor (Q). It will be shown that

there is an optimum point for minimum oscillator phase noise that relates to Q.

In [9], D.B. Leeson denoted the uncertainty of the oscillator input phase noise due

to noise and parameter variations as ∆θ (t) and its two-sided power spectral density

(PSD) as S∆θ (ωm). He denoted the total output PSD as:

SΦ (ωm) = S∆θ (ωm)

[
1 +

(
ω0

2Qωm

)2
]

(4.1)

where ω0 is the resonance frequency and ωm is the frequency offset relative to the

resonance frequency. For ωm< ( ω0

2Qωm
), in other words for offset frequencies smaller

than the half-power bandwidth of the resonator, equation 4.1 can be reduced to:

SΦ (ωm) =

(
ω0

2Qωm

)2

S∆θ (ωm) (4.2)

If one now assumes that the noise component of S∆θ is white, then its double

sideband noise power spectral density would be given by:

S∆θ (ωm) =
1

2
· FkT
PS

(4.3)

where F is the effective noise figure of the resonator, k is Boltzmann’s constant,

T is the noise temperature in kelvin and P S is the signal level at the input of the

oscillator’s active element. Substituting equation 4.3 into equation 4.2, one can now

write:

SΦ (ωm) =
ω2

0FkT

8PSQ2ω2
m

(4.4)

From equation 4.4, it can be seen that;

SΦ (ωm) ∝ 1

PSQ2
(4.5)

This implies that the output PSD of the phase noise will be at its minimum if

P SQ
2 is at its maximum. Now consider an oscillator circuit or a driven and loaded

resonator like the one shown in figure 4.2. The power delivered to the resonator by

the the generator is:

Pgen =
|Igen|2

4Ggen

(4.6)
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Figure 4.2: A generic oscillator circuit.

furthermore, the unloaded and loaded Q of the resonator can be written as equation

4.7 and equation 4.8 respectively:

QU = ω0 × Lres ×Gres (4.7)

QL = ω0 × Lres ×Geqv (4.8)

where Gres is the conductance of the resonator alone, Lres is the inductance of the

resonator and Geqv is the equivalent conductance of the entire circuit expressed in

equation 4.9.

Geqv = Gres +Gload +Ggen (4.9)

If one now sets P S = P gen and subsequently substitutes equations 4.8 and 4.6 into

equation 4.5, then the proportionality of the output PSD of the phase noise becomes:

SΦ (ωm) ∝ 4×Ggen

|Igen|2 × L2
res ×G2

eqv × ω2
0

(4.10)

which can be reduced to:

SΦ (ωm) ∝ Ggen

G2
eqv

(4.11)

Now consider the special case where Ggen = Gload; equation 4.11 can then be rewrit-

ten as:

SΦ (ωm) ∝ Ggen

(Gres + 2Ggen)2 (4.12)

This means that for the case of Ggen=Gload, the output PSD of the phase noise will
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be at its minimum when:

∂
∂Ggen

(
Ggen

(Gres+2Ggen)2

)
= 0

G2
res−4G2

gen

(Gres+4Ggen)4
= 0

2Ggen = Gres

Therefore the optimum minimum phase noise level will be reached when the load

impedance is equal to that of the source impedance and double that of the resonator

impedance. Otherwise stated: The optimum phase noise level will be reached when

a quarter of the available power is dissipated in the source, a quarter in the load and

half of the available power is dissipated in the resonator. In other words, the loaded

Q must be equal to half of the unloaded Q in order achieve a level of optimum phase

noise[14]. The design, simulation and verification of the resonator used is shown in

Appendix A.5

4.3 System measurements and evaluation

At the beginning of this chapter it was stated that the purpose of the experiment was

to evaluate the performance of the oscillator circuit depicted in the block diagram

of figure 4.1, in particular with regard to phase noise. In the previous section of this

chapter specifications have been set up for the different modules to be used in the

following experiment. In Appendix A it has also been confirmed that these modules

conformed to their various specifications.

Spice simulations indicate that the circuit will perform as expected. The collector is

driven in short current pulses when the system operates in a very non-linear way, in

other words when no attenuation is added. As more attenuation is added, however,

the collector current becomes more and more sinusoidal in nature as the system

becomes more linear; this is illustrated in figure 4.3. In addition to this, it can

be seen that the peak amplitude of the collector current is much greater for the

non-linear case than it is for the more linear case.

Also consider the output signal of the systems for both the highly non-linear as well

as the more linear case shown in figure 4.4. It is shown that the signal amplitude is

much greater in magnitude in the case of the highly non-linear system than in the

case of the more linear system. In the case of the more linear system, the signal’s

sinusoidal swing is, however, much more symmetrical than that of its non-linear

counterpart. This is due to the fact that harmonic distortion is greater in non-linear
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Figure 4.3: Simulated collector current against time

oscillators than in linear oscillators.

This phenomenon is verified by measurements shown in figure 4.5. This figure illus-

trates that the harmonic distortion for the linear case, where 15.1 dB of attenuation

was added to the oscillator circuit, is approximately -28 dBc. Now consider a more

non-linear case, where only 3 dB of attenuation was added; it is shown that the

harmonic distortion is increased to roughly -10.5 dBc. In both cases the system was

set up with amplifier A as the amplifier, phase shifter 1 as phase shift network and

LC Wilkinson divider A as the power divider used in the block diagram of figure 4.1,

only the amount of attenuation was altered. (See Appendix A, for the characterisa-

tion of the previously mentioned modules.) It must be mentioned that the difference

in the noise floor level for the two graphs shown in figure 4.5 is the result of different

resolution bandwidth being used during the measurements and has nothing to do

with the linearity of the circuits.

Figure 4.6, indicates that the magnitude of the output signal is indeed proportional

to the non-linearity of the oscillator circuit. In this figure it can be seen that the

signal magnitude for the linear case, where 15.1 dB attenuation was added, is 6.27

dBm, whereas in the more non-linear case, where only 6 dB of attenuation was

added, the signal magnitude is found to be 7.32 dB. The difference in fundamental

frequency between the two levels of attenuation can be explained with the help of

the Barkhausen criterion for oscillation. Since there are small differences in the
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Figure 4.4: Simulated oscillator signal out
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Figure 4.5: Measured harmonic distortion of oscillator circuits
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Figure 4.6: Measured output signal strengths
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Figure 4.7: Block diagram of measurement setup with external reference oscillator

phase deviation of the attenuators, less than one degree, the phase conditions of this

criterion are satisfied at slightly different frequencies.

4.3.1 Phase noise measurements

A PN9000B phase noise measurer, from Aeroflex, was used in order to perform the

following measurements. It makes use of a phase demodulation method for analysing

phase noise [15]. The PN9000B has the advantage that the measuring equipment

is very sensitive. It also has a very wide measuring bandwidth and the ability to

detect spurious responses. Furthermore, it allows for hundreds of measurements to

be repeated and averaged automatically.

Due to the fact that the expected phase noise performance of the DUT was better

than that of the PN9000B’s internal reference oscillator, an external reference oscil-

lator comprising of amplifier B, LC Wilkinson divider B, phase shifter 2 and a 13

dB attenuator configured as in figure 4.1, was used. A block diagram illustrating

the measurement setup used, is shown in figure 4.7.

As DUT, amplifier A, LC Wilkinson divider A and phase shifter 1 were used, confi-

gured as in figure 4.1. The level of attenuation was varied in order to evaluate the

phase noise as a function of system linearity. The measured results are shown in

figure 4.8. In order to facilitate distinction between the phase noise levels for the

different attenuation settings, the measurements were digitally filtered. These filte-
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Figure 4.8: Phase noise performance for different attenuation settings

red results are shown in figure 4.9. The graphs appear to indicate that the ultimate

phase noise improves as the system becomes more non-linear. If, however, one looks

at the magnitude of the signal entering the amplifier, this conclusion is called into

question.

The magnitude of the input signal can be derived by performing a loop calcula-

tion. Consider again the block diagram of figure 4.1. Since the outputs of the LC

Wilkinson Divider A are symmetrical, it can be concluded that the magnitude of

the measured signal out, is the same as that of the signal entering Phase Shifter

1. Therefore if one were to subtract the losses of phase shifter 1, the attenuator

used and the fixed resonator from the measured output signal, one would arrive at

the magnitude of the signal available to amplifier A. This data is tabulated in table

4.1. The centre frequency listed in the table denotes the oscillator’s centre frequency

measured while Power Out refers to the signal power at the fundamental frequency

measured at the output of the oscillator. The losses occurring as a result of the

phase shifter, the resonator and the attenuator used are listed below Phase Shifter,

Resonator and Attenuation respectively. Power Avail is the calculated signal power

available to the amplifier. Note that the resonator losses given, are the losses in the

resonator occurring at a frequency equal to that of the oscillator’s centre frequency.

Now consider what happens when one applies the data in figure 4.9 and table 4.1

to equation 4.13. Where Lfloor is the ultimate phase noise in dBc/Hz, FdB is the
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Figure 4.9: Digitally filtered phase noise measurements

noise figure in dB and P in is the signal power entering the amplifier in dBm [15].

Since the phase noise has been measured and the power entering the amplifier has

been calculated, the noise figure of the amplifier can be determined.

Lfloor = 10log10

(
kT

0.001

)
− 3.01 + FdB − Pin (4.13)

The calculated noise figures, as well as the open loop gains for each of the attenuation

levels of the circuit, are shown table 4.2. The open loop gain serves as an indication of

system linearity. The closer to unity it is, the more linearly the system is operating.

The open loop gain is calculated by subtracting all the losses in the system at the

operating frequency from the amplifier gain at this frequency.

Table 4.2, therefore, clearly illustrates that the system’s effective noise figure in-

creases as it becomes more non-linear. It should be noted that the effective noise

Table 4.1: Calculated input signal power and losses at measured centre frequency.

Center frequency Power Out Phase Shifter Resonator Attenuation Power Avail.

5.035 MHz 6.20 dBm 0.3 dB 6.054 dB 15.1 dB -15.254 dBm
5.031 MHz 8.17 dBm 0.3 dB 6.509 dB 11 dB -9.639 dBm
5.026 MHz 8.60 dBm 0.3 dB 7.266 dB 6 dB -4.966 dBm
5.023 MHz 8.75 dBm 0.3 dB 7.603 dB 3 dB -2.153 dBm
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figure mentioned here is the actual noise figure of the oscillator. The increase in

the amplifier’s noise figure can be attributed to noise at integer multiples of the

oscillation frequency being mixed down to frequencies situated around the carrier.

An increase in the power magnitude of the oscillator’s harmonics would, therefore,

lead to an increase in the amount of noise being transformed to frequencies around

the fundamental oscillation frequency.

4.4 Conclusion

At first glance, it appears that the ultimate phase noise level improves as the circuit

becomes more non-linear. On closer inspection, however, it can be seen that this

improvement is more likely the result of the increased output signal power level,

associated with the non-linearity, than as a result of the non-linearity itself. Fur-

thermore, it was shown that the amplifier’s effective noise figure increases as it is

driven deeper into saturation. It could be hypothesised that the increase in the

oscillator’s effective noise figure is the result of white noise situated around integer

multiples of the oscillation frequency being mixed down to frequencies near DC and

then transformed to phase noise around the carrier. This phenomenon was men-

tioned in Chapter 3.3. It could be assumed that the greater the magnitude of the

oscillator’s harmonics, the greater the effect of the white noise surrounding them

will be on the oscillator circuit’s total phase noise.

Therefore the following hypothesis can be made: A non-linearly driven oscillator

will have a greater output signal level, as well as greater harmonic distortion, than

one linearly driven. The increase in the effective noise figure associated with non-

linearity is greater than the increase in output signal level. Therefore it stands to

reason that an oscillator with good phase noise performance should be driven linearly

and be capable of handling large input signal levels without the active device being

driven into saturation. This hypothesis will be evaluated by means of the following

experiments discussed in the next chapters.

The previous conclusion also suggests that Leeson’s model approximates linearly dri-

Table 4.2: Calculated noise figures and open loop gains for different levels of attenuation

Attenuation Open Loop Gain Noise Figure

15.1 dB 1.3 dB 5.474 dB
11 dB 4.89 dB 9.789 dB
6 dB 9.13 dB 14.062 dB
3 dB 11.797 dB 16.975 dB
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ven oscillators better than their non-linearly driven counterparts, since the effective

noise figure is much lower in the more linear cases.



Chapter 5

Experiment 2:

5.1 Purpose of the experiment

In the previous chapter it was concluded that the active device in an oscillator circuit

should be capable of handling large input signal levels without going into saturation.

It was also indicated that, for the same output signal level, a linearly driven oscillator

will have better phase noise performance than a non-linearly driven oscillator. In

this chapter these conclusions will be evaluated by comparing the measured phase

noise performance of a linearly driven oscillator with that of a non-linearly driven

oscillator. In order to make a useful comparison, the oscillator circuits will be

adjusted to produce the same output signal magnitude in both cases.

The experimental setup is similar to that used in the previous chapter and is shown

in figure 5.1. Unlike the oscillators in the previous chapter, the oscillators in this

experiment, were designed to operate at 10 MHz. This choice of operating fre-

quency allows for greater ease of measurement as far as noise figure and phase noise

measurements are concerned.

5.2 The design and characterisation of the

various circuit models

A modular approach was again taken with regard to the oscillator networks used

in this experiment. Given the fact that the operating frequency of the oscillators

had changed from 5 MHz to 10 MHz, and considering the conclusions reached in the

previous chapter, some modules from the previous experiment had to be re-designed.

The specifications of these modules are briefly discussed in this section.

41
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Figure 5.1: The experimental circuit layout

5.2.1 Resistive Feedback Amplifier

As mentioned previously, an active device with the ability to handle large amounts

of input power, without being driven into saturation, is needed. For this purpose

a resistive feedback amplifier was designed and built. The design and verification

of this amplifier are discussed in Appendix C.1, which illustrates that this amplifier

adheres to the previously mentioned amplifier criterion.

5.2.2 Amplifier without Feedback

An amplifier identical to the one mentioned in the previous subsection was built,

but the feedback resistor and capacitor, Rfb and Cfb, were omitted. The amplifier
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was measured and the results are illustrated in Appendix C.2.

5.2.3 Resonator

A 10 MHz resonator was designed following a procedure similar to that outlined

in Chapter 4.2.5 and Appendix A.5. This time, however, a compromise was made

regarding the optimal power dissipation within the resonator, required for optimal

phase noise performance, in order to obtain a match at both its ports. The design

and verifications are shown in Appendix C.3. Note that the quality factor of this

resonator is slightly degraded as a result of the resistive port matching applied to it.

5.2.4 Phase Shifter

In the previous experiment a 270o LC phase shifting network was implemented

in order to negate the 90o phase shift inherent to Wilkinson power dividers. In

this experiment and the next a 68o phase shifter was implemented to negate the

phase shift resulting from both the amplifier and the power divider. The layout and

measured results of this phase shifter are discussed in Appendix C.5.

5.2.5 Power Divider and Attenuators

The attenuator used in this experiment is the same 1 dB attenuator that was used

in the previous experiment. A 10 MHz Wilkinson power divider was designed follo-

wing the same procedure as discussed in Appendix A.2. The measured results are

illustrated in Appendix C.4.

5.3 Method of the Experiment

The experiment is started by first setting up a linearly driven oscillator. This oscil-

lator comprises out of the resistive feedback amplifier, Wilkinson divider, 68o phase

shifter, resonator and the 1 dB attenuator mentioned in the previous section. The

1 dB attenuator was chosen in order to limit the open loop gain of the system to

approximately 0 dB, thereby ensuring a linearly driven oscillator. The output signal

magnitude of this oscillator was subsequently measured and is shown in figure 5.2.

Once the magnitude of the linearly driven oscillator had been determined, the re-

sistive feedback amplifier of subsection 5.2.1 was replaced with a similar amplifier,
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Figure 5.2: Measured fundamental frequency of the linearly driven oscillator

with the feedback resistor and capacitor removed. (This amplifier was mentioned in

subsection 5.2.2.) The biasing voltage at the bases of this amplifier’s transistors was

adjusted by means of an adjustable voltage regulator, until this oscillator produced

an output signal equal in magnitude to that of the previous linearly driven oscillator.

This is verified by the measurement shown in figure 5.3.

Once it had been confirmed that the two oscillator networks produced output signals

equal in magnitude, the second amplifier could be characterised. These amplifier

measurements are discussed in Appendix C.2 and indicate that this amplifier is

indeed driven nonlinearly in the oscillator loop of the present experiment: The

amplifier’s gain is approximately 5 dB higher than that of the resistive feedback

amplifier. This implies that it would necessarily be driven into saturation, since

the open loop gain of the network would be 5 dB. This amplifier is also poorly

matched, which would inevitably result in large reflections at its input port. These

facts indicate that, should the oscillator loop be driven by the amplifier without

feedback, the oscillator would be operating in a nonlinear fashion.

The previous paragraphs have illustrated that the resistive feedback amplifier would

drive the described oscillator loop linearly, whereas the amplifier without feedback

would drive it nonlinearly. Phase noise measurements were performed for both

scenarios and the results are illustrated in figure 5.4. The dotted line represents the

measured phase noise distribution of the nonlinearly driven network, while the solid
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Figure 5.3: Measured fundamental frequency of the nonlinearly driven oscillator

line denotes the phase noise distribution of the linearly driven oscillator.
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Figure 5.4: Phase noise performances of linearly and nonlinearly driven oscillator net-

works

Since the amplifiers are the only components that were varied during the execution of
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the experiment, it must be concluded that the difference in phase noise performance

is a result of the amplifiers driving the two oscillator networks.

5.4 Conclusion

In the previous chapter it was postulated that should a linearly driven oscillator and

a nonlinearly driven oscillator produce output signals that are equal in magnitude at

the fundamental frequency, the linearly driven oscillator should have superior phase

noise performance. From the experiment performed in this chapter it is clear that

this is indeed the case. This experiment indicates that the phase noise performance

of the linearly driven oscillator network is at least 10 dBc/Hz better than that of

the nonlinearly driven oscillator network.



Chapter 6

Experiment 3:

6.1 Purpose of the Experiment

In chapter 4 it was suggested that the more closely an oscillator approaches linear

operation, the more closely its phase noise performance would approach the phase

noise predicted by Leeson’s model. During the course of the following experiment

this claim will be evaluated in greater detail.

In this experiment the author assesses just how sensitive the phase noise performance

of an oscillator network is with regards to the degree of saturation within which it’s

active device is operating.

6.2 Method of the Experiment

In the following experiment the oscillator’s active device is driven deeper and deeper

into compression in steps of approximately 0.1 dB. This is achieved as follows: A

variable attenuator was designed, the design of which is discussed in Appendix C.6.

This design allows for its attenuation to be adjusted in steps of 0.1 dB, with minimal

variations in its phase deviation for the various attenuation settings.

The experimental setup is similar to that described in chapters 4 and 5. The oscilla-

tor block diagram is shown in figure 6.1. The resonator, resistive feedback amplifier,

power divider and phase shift network used in Chapter 5 is again employed in this

experiment. The fixed attenuator has a loss of 1 dB and the variable attenuator is

initially set to its maximum loss of approximately 0.8 dB. At this point the loop

gain of the network is less than 0 dB and no oscillation takes place. The loss of the

47
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Figure 6.1: The experimental setup

variable attenuator is then reduced in steps of nearly 0.1 dB until oscillation occurs.

For the circuit used in this experiment it was found that a total attenuation loss of

1.4 dB is the greatest level of attenuation at which oscillation can still take place.

The gain condition for oscillation states that the open loop gain of an oscillator

network must be greater than 0 dB in order for oscillation to take place. Since

oscillation did not occur at an attenuation level of 1.5 dB, it may be argued that at

this attenuation setting, the open loop gain of the system is less than 0 dB. (Since

no oscillation occurs, it may be concluded that no saturation of the active device is

occurring either. Therefore the open loop gain is the same as the closed loop gain

for an attenuation setting of 1.5 dB or greater.) Following a similar argument, the

open loop gain of the network must therefore be greater than 0 dB at an attenuation

setting of 1.4 dB. Since these attenuation settings differ by only 0.1 dB, it must be

concluded that the open loop gain of the system must be less than or equal to 0.1

dB for a 1.4 dB attenuation setting. At this point, the active device is operating

between 0 and 0.1 dB into compression at an attenuation setting of 1.4 dB. This

statement can be explained as follows: at the point of stable oscillation, the closed
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loop gain of the oscillator network must be unity (0 dB). In an oscillator network

such as the one being considered in this experiment, this condition is realised by

saturation of the active device. Since the open loop gain of the network is less than

or equal to 0.1 dB, it must be concluded that the level of saturation occurring within

the active device must also be less than or equal to 0.1 dB. It therefore stands to

reason that, should the total amount of attenuation (from the variable and the fixed

attenuator) be decreased to 1.3 dB, the active device would be operating between

0.1dB and 0.2 dB into compression. For 1.2 dB of attenuation it will be operating

between 0.2 dB and 0.3 dB into compression, etc.

By adjusting the amount of attenuation, the output signal magnitude, as well as the

phase noise performance of the oscillator, can be measured as a function of the level

of saturation occurring within the active device.

6.3 Measurements and Discussion

The phase noise performance was measured for four levels of amplifier saturation.

These measurements were taken with the amplifier operating respectively within 0.1

dB, 0.2 dB, 0.3 dB and 0.4 dB of compression and are illustrated in figure 6.2.

Apart from the measurement taken for the amplifier operating at 0.1 dB of com-
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Figure 6.2: Phase noise vs. compression
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Figure 6.3: Signal magnitude vs. compression

pression, it can be seen that the phase noise performance deteriorates as the level

of amplifier saturation increases. The reason for the discrepancy at 0.1 dB of am-

plifier saturation may be explained as follows: Consider the measured output signal

magnitudes of the oscillator for the different levels of amplifier saturation, shown in

figure 6.3. These measurements indicate that the magnitude of the output signal is

approximately 10 dB smaller when the amplifier operates within 0.1 dB of compres-

sion than when it operates at deeper levels of compression. Since the phase noise is

represented in dBc/Hz, it stands to reason that the phase noise measured for 0.1 dB

of amplifier compression will necessarily be poorer than the phase noise measured

while the amplifier is operating within 0.2 dB saturation. This is purely as a result

of the difference in carrier magnitude. A more reasonable method of evaluating the

phase noise performance with regard to the level of amplifier saturation (or system

linearity) is needed. One way to do this would be to compare the phase noise per-

formance at each of the different amplifier saturation settings with the phase noise

predicted by Leeson’s model.
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6.3.1 Comparing Measured Phase Noise with Leeson’s

Model

Assuming that the noise power density entering the amplifier is white, the phase

noise distribution given by Leeson’s model may be calculated as follows: First the

ultimate phase noise is calculated. This is phase noise far from the carrier and is the

lowest achievable phase noise limit that the oscillator can obtain [15]. It is calculated

by adding the system noise figure, in dB, to the theoretical minimum phase noise

power, in dBm, and then subtracting the signal magnitude, in dBm, from this value.

Mathematically this may be stated as:

L (f) = P phase +NF − P (6.1)

In equation 6.1, P is the magnitude of the oscillator’s output signal and P phase

represents the theoretical minimum achievable phase noise power, in dBm, which

can be calculated by:

P phase = Pthermal − 3.01[dB] (6.2)

where
Pthermal = kTB

= −174dBm
(6.3)

is the theoretical thermal noise floor. In equation 6.3, k is Boltzmann’s constant,

T = 300K and B = 1Hz. The thermal noise power consists of equal AM and

FM/PM components. The phase noise power is therefore 3.01 dB less than the

thermal noise power [16].

NF represents the noise figure of the system (the combined noise figure of the

cascaded system) in equation 6.1 and may be calculated as follows:

Fsys = F1 +
(F2 − 1)

G1

+
(F3 − 1)

G1G2

+ ... (6.4)

The values in equation 6.4 are all linear. F sys is the total noise factor of the cascaded

system. F 1 represents the noise factor of the first element in the cascade, F 2 the

second and so forth. Similarly G1 represents the gain of the first element in the sys-

tem, G2 the second and so forth. A lossy element will have a negative gainc[17]. The

noise figure is simply the noise factor expressed in dB, as is illustrated in equation

6.5 [17].

NF = 10× log (Fsys) (6.5)



CHAPTER 6. EXPERIMENT 3: 52

In the case of the oscillator network used in this experiment, the loop should be

broken at the same point in the chain as that from which the signal is taken, ie. after

the power divider, as is shown in figure 6.4, in order to calculate the cascaded noise

figure. This implies that the resonator is the first element in the cascaded network

and that the Wilkinson divider is the final element in the chain. It should also be

noted that the noise figure of a passive element is equal to the loss of the element.

Another factor to be taken into consideration is the fact that, while oscillation is

occurring, the loop gain of the network is 0 dB. This implies that the gain of the

amplifier must be decreased as the amount of attenuation is decreased, in order to

compensate for this. The previously mentioned adjustment of the amplifier’s gain

correlates with the phenomenon of amplifier saturation which will inevitably occur

during oscillation and result in a lower amplifier gain. The losses, and therefore the

noise figures, of the passive elements in the cascade may be read from the measured

results in Appendix C. These values result in the system noise figures shown in table

6.1 at the various levels of saturation.

Table 6.1: Noise figures and resulting ultimate phase noise.

Saturation level Signal magnitude Amplifier Gain NF Ultimate Phase Noise

0.1 dB 5.18 dBm 12.9 dB 14.4 dB -167.78 dBc/Hz
0.2 dB 13.27 dBm 12.8 dB 14.3 dB -175.60 dBc/Hz
0.3 dB 15.89 dBm 12.7 dB 14.2 dB -178.69 dBc/Hz
0.4 dB 16.20 dBm 12.6 dB 14.1 dB -179.1 dBc/Hz

The next step in deriving Leeson’s phase noise model is to determine the Leeson

frequency. This was shown in Chapter 3.4 and is again defined here in equation 6.6.

fL =
f0

2Q
(6.6)

In this equation Q represents the loaded quality factor of the resonator. Since all

of the modules in the oscillator have a characteristic impedance of 50 Ω, this value

can be determined directly from the resonator passband (S21) measurement shown

in Appendix C.3, by using the following equation 6.7.

Q =
1

BW
(6.7)

BW represents the half power bandwidth of the resonator. It is determined by

subtracting the lower half power frequency from the higher half power frequency

and dividing the result by the resonant/centre frequency of the resonator. These
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Figure 6.4: Oscillator loop broken in order to calculate system noise figure.

values may be read from figure C.16, and result in Q = 74.6. Substituting this value

in equation 6.6, yields a Leeson frequency of 70 kHz. In Chapter 3.4, it was shown

that for frequencies smaller than the half power bandwidth of the resonator, the

phase noise has a 1
f2

dependence with regard to the noise power distribution of the

loop. This implies that, on a logarithmic scale, the phase noise distribution between

the Leeson offset frequency and carrier frequency will increase by 20 dB per decade.

Note that this phase noise distribution holds true only for the assumed case of a

white noise power distribution entering the resonator. The phase noise distribution

as defined by Leeson’s model for each of the previously mentioned levels of amplifier

compression would, therefore, be as depicted by the dashed lines in figures 6.5 to

6.8.

6.3.2 Discussion of Phase Noise Measurements

The measured phase noise distributions for each of the different levels of compression

are illustrated in figures 6.5 to 6.8 by the solid lines. The measurements were taken

with an FSUP-8 from Rohde & Schwarz. These figures clearly indicate that Leeson’s

model is a fair approximation of the measured phase noise for the cases where the

amplifier is operating at 0.1 dB (figure 6.5) and 0.2 dB compression (figure 6.6).

However, the model rapidly loses accuracy as the level of amplifier compression

increases beyond 0.3 dB, as is shown in figures 6.7 and 6.8. It should be noted
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Figure 6.5: Discrepancy between measured and predicted phase noise at 0.1 dB amplifier

saturation.
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Figure 6.6: Discrepancy between measured and predicted phase noise at 0.2 dB amplifier

saturation.
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Figure 6.7: Discrepancy between measured and predicted phase noise at 0.3 dB amplifier

saturation.
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Figure 6.8: Discrepancy between measured and predicted phase noise at 0.4 dB amplifier

saturation.
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that the author did not take the effect of frequency flicker noise into account while

generating the Leeson approximations of the measurements. The effect of this flicker

noise is, however, clearly visible in all of the measured results and manifests as a 1
f3

component in the phase noise.

It should also be considered that the phase noise measurement in the case where the

amplifier is operating at 0.1 dB compression might not be accurate. This claim is

made due to the fact that the amplifier’s gain would inevitably vary with tempera-

ture. Given that the oscillator is operating on the fringe of the loop gain oscillation

condition, it may be assumed that the magnitude of the oscillator’s output signal will

vary. This could account for the measured phase noise showing better performance

than that predicted by Leeson’s model for oscillator phase noise.

The erratic behaviour of the measured phase noise at offset frequencies of 300 Hz

and less is also noticeable. 300 Hz coincides with the bandwidth of the phase noise

meter’s phase locked loop (PLL) during the measurements. (the FSUP-8) It may

therefore be assumed that at offset frequencies smaller than the loop bandwidth of

the FSUP-8’s PLL, mixer pulling is occurring between the DUT and the FSUP-8’s

LO. This effect becomes less noticeable as the level of compression into which the

oscillator is driven is increased. (This effect could possibly have been avoided had

a buffer amplifier been in place between the oscillator’s output and the phase noise

meter.)

Another anomaly to consider is the bulge on the measured phase noise curves bet-

ween the offset frequencies of 40 kHz and 400 kHz. This phenomenon may be attri-

buted to noise inherent to the oscillator’s power source or voltage regulators. (This

will be confirmed in a later chapter.) What is of note, is that this bulge becomes

smaller as the level of amplifier saturation is decreased.

6.4 Conclusion

In chapter 4 it was hypothesised that the more linear the operation of an oscilla-

tor’s active device, the better its phase noise distribution could be approximated

by Leeson’s model. During the course of this experiment it was shown that this is

indeed true. It was also shown that the phase noise measurements of the linearly

driven oscillator are more susceptible to the effects of mixer pulling than their more

non-linearly driven counterparts, even if the degree of non-linearity differs by frac-

tions of a decibel. This effect could be negated by placing a buffer amplifier between

the oscillator’s output and the measuring equipment or by increasing the quality
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factor of the resonator. This will be evaluated in the following experiment. Per-

haps the most interesting observation in the previous experiment was that the more

linear the operation of the amplifier became, the less discernable the effect of the

noise inherent to the power source became in the phase noise measurements. This

occurrence can again be explained by the same mechanism discussed in chapters

3.3 and 4.4. The low frequency noise originating from the power source and/or

voltage regulators situated near DC, is mixed up in frequency to sit around the

fundamental frequency as well as around the harmonics of this frequency. The noise

situated at these harmonics is then transformed into phase noise situated around the

fundamental frequency as was explained in the previously mentioned chapters [11].

This implies that as the level of amplifier saturation is decreased, and consequently

also the magnitude of the harmonics being generated, the effect of the source noise

becomes less noticeable in the phase noise measurements.



Chapter 7

Experiment 4:

7.1 Purpose of the Experiment

In the previous experiments resonators with relatively low quality factors were used.

Low Q resonators allow for more frequency drift to take place during oscillation.

During the course of this experiment, the performance of an oscillator with a high

quality factor resonator will be evaluated. This is done in order to determine how

such an oscillator is affected by the degree of linearity under which it is operating.

7.2 Method of the Experiment

The same technique used in chapter 6.2 is again employed here. The LC resonator of

the previous experiment was, however, replaced with the crystal resonator described

in Appendix D.1. The experimental setup is illustrated in figure 7.2. The resistive

feedback amplifier, phase shifter, Wilkinson power divider and variable attenuator,

Figure 7.1: Crystal loop oscillator setup used in experiment 4

58
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Figure 7.2: Experimental setup

are the same modules used in the previous chapter. As far as the fixed attenuator is

concerned, in order to acquire the necessary levels of attenuation, a 4dB and a 3dB

attenuator were respectively used in conjunction with the variable attenuator.

As in the previous experiment the amount of attenuation is decreased in steps of

approximately 0.1 dB and the phase noise performance was measured for each atte-

nuation setting.

7.3 Measurements and Discussions

Figure 7.3 depicts four phase noise measurements taken at different attenuation

settings. In order to keep the graph uncluttered not all of the consecutively taken

measurements are shown in this figure. It is noteworthy that there is very little

variation in the phase noise performance for the different attenuation levels at offset

frequencies close to the carrier. Also of note is that for levels of amplifier compression

below 0.6dB there is very little variation in the phase noise performance of the

oscillator, as is illustrated in figure 7.4.
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Figure 7.3: Phase noise vs. compression
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Figure 7.4: Phase noise vs compression for compression levels of less than 0.6 dB
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Table 7.1: Ultimate phase noise and cascaded noise figure for various levels of amplifier

saturation.

Saturation Level Signal Magnitude Amplifier Gain NF Ultimate Phase Noise

0.1 dB 15.47 dBm 12.98 dB 14.4828 dB -177.9872 dBc/Hz
0.2 dB 16.2 dBm 12.88 dB 14.3828 dB -178.8172 dBc/Hz
0.5 dB 16.26 dBm 12.58 dB 14.0907 dB -179.1693 dBc/Hz
0.9 dB 17 dBm 12.18 dB 13.6994 dB -180.3006 dBc/Hz
1.2 dB 17.16 dBm 11.88 dB 13.4064 dB -180.7536 dBc/Hz

7.3.1 Comparing Phase Noise Measurements with Leeson’s

Model

In figures 7.5 to 7.9 a few phase noise measurements taken at different levels of am-

plifier compression are depicted by the solid lines. On the same figures, two phase

noise approximations given by Leeson’s model are also shown. One approximation

assumes that only white noise is entering the resonator and this is depicted by the

dashed line. The other assumes that a flicker noise component is also present. For

the case where only white noise is assumed to have entered the resonator, the same

procedure as was described in the previous chapter is used to draw the approxima-

tion. Once again the system noise figure is calculated along with the ultimate phase

noise for each of the illustrated levels of amplifier compression. The results, along

with the measured magnitude of the oscillator’s output signal and corresponding

amplifier gain, are shown in table 7.1. Once again the Leeson frequency was cal-

culated using equation 6.6. In this case Q is taken to be 86799.6 (from Appendix

D.1). At the fundamental oscillating frequency of 9.9997 MHz, this yields a Leeson

frequency of 56.6 Hz

For the case where the presence of a flicker noise component is assumed to have

entered the resonator, the same Leeson frequency, as well as the ultimate phase

noise, also applies. In order to illustrate a Leeson model which assumes the presence

of flicker, or 1
f

noise, a flicker/ 1
f

corner frequency must first be determined. This is

done as follows. In chapter 3.4, it was shown that for offset frequencies greater than

the Leeson frequency the resonator has no effect on the phase noise distribution of

the oscillator. For offset frequencies smaller than the Leeson frequency, the phase

noise is altered and receives an additional 1
f2

dependency. Since flicker noise has a
1
f

dependency, it therefore stands to reason that for offset frequencies ranging from

the flicker corner frequency to the Leeson frequency, the phase noise will increase

by 10 dB/decade. For offset frequencies ranging from the Leeson frequency to the

carrier frequency, the phase will increase by 30 dB/decade. With this information at
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Figure 7.5: Measured and predicted phase noise at 0.1 dB amplifier compression.

hand, a line with 10 dB/decade dependence ( 1
f

dependence) can be fitted onto the

measured results. The intersect point of this line and the line of constant ultimate

phase noise, results in the 1
f

corner frequency. It is assumed that the phase noise

measurement for the case where the amplifier is operating at less than 0.1 dB of

saturation, is the most accurate representation of the noise inherent to the system.

This assumption is based upon the results of the previous chapters. The argument is

put forward that, when operating in its most linear state, the harmonics generated

by the oscillator are minimised. This results in less noise situated at integer multiples

of the oscillation frequency being mixed down to near the fundamental frequency.

For this reason the 1
f

corner is determined from the phase noise measurement where

the amplifier is operating within 0.1 dB of compression. This results in the line with

both dots and dashes depicted in figures 7.5 through 7.9. Note that it is assumed

that the 1
f

corner frequency is the same for all levels of amplifier compression.

7.3.2 Discussion of Phase Noise Measurements and

Approximations

In figures 7.5 through 7.9 it is clear from the slope of the measured phase noise that

a relatively large flicker noise component is present within the loop. With this in

mind, the focus of this discussion shifts to the comparison of the measured phase
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Figure 7.6: Measured and predicted phase noise at 0.2 dB amplifier compression.
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Figure 7.7: Measured and predicted phase noise at 0.5 dB amplifier compression.
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Figure 7.8: Measured and predicted phase noise at 0.9dB amplifier compression.
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Figure 7.9: Measured and predicted phase noise at 1.2 dB amplifier compression.
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noise, depicted by the solid line and the phase noise approximation, which assumes

the presence of a flicker noise component. (Depicted by the line with both dots and

dashes.) Once again it is shown that as the level of amplifier saturation/compression

is increased, so too is the deviation between the measured phase noise and that

predicted by Leeson’s model.

Also evident is the presence of power source noise between offset frequencies of 10

kHz and 400 kHz. (Noise from voltage supplies and regulators.) In the previous

experiment this noise was only visible between 40 kHz and 400 kHz, since it was

obscured by the effect of the LC resonator on the phase noise. The effect of this

type of noise on the measured phase noise also becomes more distinguishable as the

level of amplifier saturation is increased. This was also the case in the previous

experiment.

It can also be seen that the Leeson’s frequency that was calculated using the crystal

resonator’s measured data does not compare well with measured phase noise: Com-

pare the measured phase noise with that predicted by Leeson’s model in figure 7.5.

It can be seen that the measured phase noise assumes a 30 dB/decade dependence

at an offset frequency further from the carrier than the predicted Leeson frequency.

The same is true for the measurements shown in figures 7.6 to 7.9. This implies that

the calculated Leeson frequency must be wrong. This fact could be attributed to

the fact that the frequency at which oscillation occurs in the oscillator is not neces-

sarily the same as the resonant frequency of the resonator. As was stated earlier,

oscillation will occur at a frequency where both the phase and the gain conditions in

the loop are met. It is possible for oscillation to occur at a frequency slightly off the

resonant frequency of the resonator. Since the phase condition within the oscillator,

at oscillation, may differ from the phase condition at resonance within the resonator,

inherently so too must the group delay, and therefore the Leeson frequency.

It is clear from the measurements that phase noise measurements of an oscillator

using a resonator with a high quality factor and operating at low levels of amplifier

compression, is much less susceptible to mixer pulling between the DUT and phase

noise measurer than an oscillator using a low Q resonator under the same conditions.

7.4 Conclusion

Once again it was shown that as the level of amplifier compression decreases, the

measured phase noise is better approximated by Leeson’s model. It was also shown

that the effect of noise inherent to the voltage supplies becomes more prominent
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within the phase noise measurements as the amplifier is driven deeper into compres-

sion.

The high Q resonator used in this experiment led to a significant improvement in

the oscillator’s phase noise performance from that of the previous experiment, where

a low Q resonator was used. This may be explained using the Leeson equation,

equation 3.32. As the loaded Q is increased, the phase noise must decrease. The

resonator is only able to affect the phase noise within its half power bandwidth and

has no effect on phase noise within the system at offset frequencies outside this band.

A discrepancy between the calculated Leeson frequency and the measurements was

pointed out in the previous section. A better estimate of this frequency must be

obtained. This will be done in the following chapters.

Another point to be considered, is illustrated in figure 7.10. The solid line indicates

the measured phase noise when the amplifier is operating within less than 0.1 dB

of saturation. The dashed line depicts the minimum phase noise of the FSUP8 as

given by Rohde & Schwarz in its datasheet. This figure shows that the measured

phase noise approximates the specified phase noise performance of the machine at

some of the offset frequencies. It can therefore be concluded that the phase noise of

the oscillator might be lower than that of the machine at these offset frequencies, in

which case the measured result would be that of the FSUP8, instead of that of the

oscillator.
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Figure 7.10: Measured phase noise @ 0.1 dB amplifier saturation vs. FSUP8 minimum

phase noise specifications.



Chapter 8

Experiment 5:

8.1 Purpose of the Experiment

In the previous two experiments it was shown that noise from the power supplies

and/or voltage regulators driving the system had a significant effect on the measured

phase noise. In order to negate this occurrence the resistive feedback amplifier used

in the previous experiments was modified as is shown in Appendix D.2. The short-

comings of estimating the Leeson frequency by means of the measured bandwidth

was also pointed out. This point will be addressed during the following experiment

where, instead of the resonator bandwidth, the oscillator’s group delay will be used

to determine its quality factor.

8.2 Method of the Experiment and Measured

Results

The oscillator network is shown in figure 8.1. It uses the same resonator, phase

shifter and Wilkinson divider as was used for the experiment in chapter 6.

It was determined that the maximum amount of added attenuation that would still

allow oscillation to take place in the network, is 1.2 dB. For this reason the fixed

attenuator in figure 8.1 was chosen to be 1 dB and the variable attenuator was set

to 0.2 dB. (The same variable attenuator as was used in the previous experiments.)

68
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Figure 8.1: The oscillator network

8.2.1 Open Loop Simulations and Measurements

In order to determine the the network’s group delay, the oscillator loop must be

broken. In this subsection the simulated group delay will be compared with that of

the physical system. For both simulation and measurements, consider the output

port to be terminated and the loop to be broken between the two attenuators, as

is shown in figure 8.2. The frequency at which the circuit will oscillate, should the

loop be closed, can be determined using the Barkhausen criterion. Oscillation will

occur at a frequency where the total loop gain is greater than 0 dB and the phase

deviation is 0o.

First a Spice simulation of the circuit was performed. From these simulations the

group delay and passband was extracted for the cases where the amplifier would be

operating within 0.1 dB and 0.2 dB of saturation, should the loop be closed. This

is shown in figure 8.3 and figure 8.4.

For the simulated oscillator networks, the maximum group delay will occur at the

oscillation frequency. This is due to the fact that the phase shift network used,

was designed to negate the combined phase shift associated with the amplifier and

the power divider. This can be seen figure 8.5, but is not the case for the physical
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Figure 8.2: The oscillator network with the loop broken
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Figure 8.3: Simulated passband and group delay at 0.1 dB open loop gain
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Figure 8.4: Simulated passband and group delay at 0.2 dB open loop gain
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network: The phase shift associated with the cables and connectors that connect

the different modules have not been taken into account. Their effects will become

apparent in the following measurements.

The quality factor of the network at the oscillating frequency can be calculated by

using the maximum group delay of the simulated circuit and substituting this value

into equation 8.1. This equation was derived in chapter 3.4.

Q = πf0τ0 (8.1)

By combining equation 8.1 with equation 8.2, which was also derived in chapter 3.4,

the Leeson frequency can be determined.

fL =
f0

2Q
(8.2)

The Qs and Leeson frequencies for the simulated networks that would result in the

amplifier operating within 0.1 dB and 0.2 dB of saturation should the loop be closed,

were calculated and are indicated in table 8.1.

Table 8.1: Simulated quality factors and Leeson frequencies

Sat. level τ Q fL

0.1 dB 2557 ns 85.92 62.267 kHz
0.2 dB 2556 ns 85.887 62.292 kHz

The following measurements were taken using a calibrated ZVB VNA from Rhode &

Schwarz. Figure 8.6 illustrates the open loop pass band of the circuit, as well as its

group delay for the circuit conditions under which the amplifier would be operating

within 0.1 dB of saturation should the loop be closed. Ideally the frequency at which

the maximum group delay occurs (and therefore the maximum quality factor) will

coincide with the oscillating frequency, as was the case with the simulated results.

Figure 8.7, however, indicates that this is not the case in this loop network, since

the frequency at which the phase condition for oscillation is satisfied differs from the

frequency at which the group delay is at its maximum.

The measurements appear to indicate that the loop gain condition for oscillation is

not satisfied at the frequency where the phase condition is satisfied. This could be

attributed to the measurement uncertainty that inherently occurs during two port

measurements. The degree of uncertainty can be calculated in terms of the VSWR

or the reflection coefficients, measured at the measurement ports by means of the
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Figure 8.6: Measured passband and group delay at 0.1 dB open loop gain
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Figure 8.7: Measured phase deviation and group delay at 0.1 dB open loop gain
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Figure 8.8: Calculated maximum and minimum amplitude measurement errors at 0.1

dB amplifier saturation

following equation[18],[19].

Aerror = 20× log (1± |S11S22|) (8.3)

In equation 8.3, Aerror represents the maximum and minimum error that may occur

as a result of mismatches between the DUT and the VNA’s ports. By implementing

equation 8.3 for the measured reflection coefficients of the network, while the am-

plifier is operating within 0.1 dB of saturation, the maximum and minimum errors

for all frequencies in the band of interest can be calculated. This is illustrated in

figure 8.8. These graphs indicate that the S21or pass band measurement might be

off by as much as ±0.355 dB. Should this be taken into account, the gain condition

for oscillation is also met.

The group delay measured at 10.815 MHz, the frequency where the phase condition

is satisfied, is found to 1619 ns. Substituting these values into equation 8.1 yields a

quality factor of 54.98. From this the Leeson frequency is calculated using equation

8.2 and is found to be 98.3 kHz.

The process was repeated for the case where the amplifier is operating within 0.2 dB

of saturation. These measurements are illustrated in figures 8.9 through 8.11. The

resulting Leeson frequency is shown in table 8.2. Note that the ultimate phase noise
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Figure 8.9: Measured passband and group delay at 0.2 dB open loop gain

was determined using the same method as was used in the previous experiments.

The maximum calculated amplitude errors are shown in table 8.3.

Table 8.2: Open loop data at the oscillation frequency

Sat level f 0 τ0 Q fL Ult. Phase Noise

0.1 dB 10.815 MHz 1619 ns 54.98 98.3 kHz -173.33 dBc/Hz
0.2 dB 10.810 MHz 1593 ns 54.099 99.9 kHz -176.69 dBc/Hz

Table 8.3: Maximum calculated error in amplitude measurement

Sat. level S11 S22 Aerror

0.1 dB -14.09 dB -13.51 dB 0.355 dB
0.2 dB -13.49 dB -13.53 dB 0.3788 dB

Significant differences exist between the measured and the corresponding simulated

open-loop results. These differences could be minimised if the path lengths of the

cables and the connectors were taken into account. The spice simulation also assu-

med lossless components. A difference in the oscillation frequencies of the simulated

and measured results was also indicated. This may be attributed to an alteration of

the loop spacings of the resonator’s inductor, that could have occurred during the

handling of the oscillator. Another contributing factor to the difference in frequency
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Figure 8.10: Measured phase deviation and group delay at 0.2 dB open loop gain
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Figure 8.11: Calculated maximum and minimum amplitude measurement errors at 0.2

dB open loop gain
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Figure 8.12: Oscillator measurements with FSUP8

would be the previously mentioned added phase shift that resulted from the cables

and connectors that connect the different modules.

8.2.2 Phase Noise Measurements

The loop was subsequently closed again and two phase noise measurements were

taken using an FSUP8 signal-source analyser, as shown in figure 8.12. These are,

respectively, for the scenarios where the amplifier is operating within 0.1 dB and

0.2 dB of saturation. These measurements are depicted by the solid lines in figures

8.13 and 8.14. Once again the bandwidth of the phase noise meter’s pll was set to

300 Hz. As was the case in chapter 6, some mixer pulling between the phase noise

meter’s VCO and the DUT is evident in both of the previously mentioned figures

at offset frequencies below this bandwidth.

The dashed line in figures 8.13 and 8.14 represents the Leeson approximation of the

phase noise, should the amplifier be driven to within 0.1 dB and 0.2 dB of saturation

respectively. Note that these approximations assume a white noise distribution en-

tering the network. These are relatively good approximations of the phase noise. It

must, however, be taken into account that the ultimate phase noise was calculated

using the assumption that oscillation will occur at the frequency where the resona-

tor’s passband is at a maximum. Figures 8.7 and 8.10, however, clearly illustrate

that the oscillators’ phase conditions are not met at the frequency where the ma-

gnitude of the loop pass bands is greatest. Therefore, it may be assumed that the

ultimate noise floor is, in fact, larger than anticipated. Adding an additional 3 dB

to the ultimate phase noise result in the Leeson approximations depicted with the



CHAPTER 8. EXPERIMENT 5: 78

dash-dot line in figures 8.13 and 8.14. These lines are near perfect approximations of

the measured phase noise at offset frequencies greater than 1 kHz from the carrier.

8.3 Conclusion

Special precautions were taken in order to remove noise from the power sources

and regulators. This resulted in less noise entering the system and allows for the

elimination of some noise source uncertainties. These are not as apparent when

using a low Q resonator, since most of the phase noise effects resulting from source

noise are obscured by the resonator’s passband.

In this chapter a method of determining the group delay of the oscillator network was

introduced by breaking the oscillator loop and terminating its output. It was shown

that the group delay measurement serves to obtain a much better approximation of

the network’s Q and therefore also of its Leeson frequency. Using this method, the

author was able to fit a Leeson approximation that closely resembles the measured

phase noise data. Allowing for a 3 dB error in the calculation of the ultimate phase

noise floor resulted in a near perfect approximation of the measured phase noise.

Perhaps the most significant conclusion that may be drawn from this experiment

is the following: For low Q, linearly driven oscillator networks, in the absence of
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Figure 8.13: Phase noise @ 0.1 dB amplifier saturation.
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Figure 8.14: Phase noise @ 0.2 dB amplifier saturation.

power source noise, a very accurate approximation of the measured phase noise can

be made using Leeson’s model. Of further note is that even when assuming that the

noise distribution entering the resonator is white, this model maintained its accuracy

at offset frequencies greater than 1 kHz.



Chapter 9

Experiment 6:

9.1 Purpose of the Experiment

This experiment acts as a continuation of the experiment performed in chapter 8.

Here the low Q resonator of the previous experiment is replaced with the high Q

resonator characterised in Appendix D.3. This resonator differs from the one used in

chapter 7 in that an AT-cut crystal is used instead of a SC-cut crystal. The reason

for this was noted in the conclusion of chapter 7. The reduction of the resonator’s Q

(by using an AT-cut crystal instead of an SC-cut crystal), leads to a deterioration of

the phase noise performance of the oscillators in which it is used. The phase noise

performance will therefore be inferior to that of the FSUP8 signal-source analyser,

which means that this machine will be capable of accurately measuring the phase

noise performance of the following oscillator networks.

The same method used in the previous experiment to determine the Leeson fre-

quency, is applied here again . The purpose of this experiment is to verify that,

should this method of determining the Leeson frequency be used, Leeson’s model

Figure 9.1: Oscillator network using an AT-cut crystal resonator

80
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Figure 9.2: The oscillator network

accurately approximates the measured phase noise of this linearly driven oscillator

with a high Q resonator.

9.2 Method of the Experiment

The oscillator network used is depicted in figure 9.2. The amplifier, phase shifter and

Wilkinson divider are the same modules that were used in the previous experiment.

As mentioned previously, the resonator used is the one described in Appendix D.3.

The maximum amount of added attenuation at which oscillation will still occur, was

found to be 4.5 dB. This was determined by the same means as described in the

previous chapter. This added attenuation comprises a fixed 4 dB attenuator along

with the variable attenuator of the previous chapters, set to 0.5 dB.



CHAPTER 9. EXPERIMENT 6: 82

Figure 9.3: The Oscillator network with the loop broken

9.2.1 Open Loop Measurements

As in the previous chapter, the oscillator loop was broken between the two attenua-

tors, as is illustrated in figure 9.3. This was done in order to determine the group

delay of the network and thereby also its quality factor.

First consider the case where the network has less than 0.1 dB of open loop gain

(when the variable attenuator is set to 0.5 dB attenuation). The measured open loop

gain and phase deviation of this circuit is shown in figure 9.4. From these graphs

the oscillating frequency of the network, should the loop be closed, is determined to

be 10.2409 MHz.

Figure 9.5 depicts the measured group delay of the network. From it, the group

delay at the oscillating frequency was read and found to be 19.93 µs. By substituting

the measured group delay(τ0) and oscillating frequency(f 0) into equation 8.1, given

again below, the quality factor is calculated to be

Q = πf0τ0

= 641.2
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Figure 9.4: Oscillation conditions @ 0.1 dB open loop gain
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Figure 9.5: Group delay @ 0.1 dB open loop gain
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Subsequently the Leeson frequency is determined by substituting Q into equation

8.2 (given below)

fL = f0
2Q

= 7.986 kHz

Next the losses that occur within the resonator, at the oscillating frequency is ob-

tained. This can be read from figure D.15 or figure D.16 in Appendix D.3 and was

found to be 4.544 dB. Given that the loss of a passive circuit is equal to its noise

figure, the noise figure of the resonator at the oscillating frequency is 4.544 dB. With

this information the system noise figure can be determined by using the equations

for cascaded noise given in chapter 6.3.1. This noise figure (NF ) was calculated to

be NF = 14.2318 dB.

The loop was then closed in order to measure the magnitude of the oscillator’s output

signal (P signal). This was measured and found to be 11.85 dBm

The ultimate phase noise (Lultimate) can subsequently be calculated using equation

9.1, which can be obtained from equations 6.1, 6.2 and 6.3.

Lultimate = −177 +NF − Psignal (9.1)

For the oscillator network, with the amplifier operating within 0.1 dB of saturation,

Lultimate = −174.62dBc

Similarly the group delay, quality factor, Leeson frequency and ultimate phase noise

can be determined for the cases where the oscillator’s amplifier is operating at 0.2

dB, 0.3 dB, 0.4 dB and 0.5 dB into compression, from the data depicted in figures 9.6

through 9.13. Otherwise stated, the previously mentioned criteria can be determined

for the scenarios where the open loop gain of the network is set to 0.2 dB, 0.3 dB,

0.4 dB and 0.5 dB respectively. This is done by switching the variable attenuator

from 0.4 dB to 0.1 dB attenuation in steps of 0.1 dB.

The Leeson frequency, at the previously mentioned levels of open loop gain, and

the determined criteria needed to calculate it, are listed in table 9.1. Table 9.2 lists

the ultimate phase noise at these open loop gain levels, along with the necessary

variables to calculate it.

9.2.2 Phase Noise Measurements

From the values in tables 9.1 and 9.2, phase noise approximations can be made using

Leeson’s model, at the previously specified levels of amplifier saturation.
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Figure 9.6: Oscillation conditions @ 0.2 dB open loop gain
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Figure 9.7: Group delay @ 0.2 dB open loop gain
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Figure 9.8: Oscillation conditions @ 0.3 dB open loop gain
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Figure 9.9: Group delay @ 0.3 dB open loop gain
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Figure 9.10: Oscillation conditions @ 0.4 dB open loop gain
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Figure 9.11: Group delay @ 0.4 dB open loop gain
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Figure 9.12: Oscillation conditions @ 0.5 dB open loop gain
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Figure 9.13: Group delay @ 0.5 dB open loop gain
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Table 9.1: Leeson frequency and related variables @ various open loop gains

Gain f 0 τ0 Q fL

0.1dB 10.2409MHz 19.93µs 641.2 7.985kHz
0.2dB 10.24105MHz 18.65µs 593.76 8.624kHz
0.3dB 10.24105MHz 18.345µs 590.22 8.676kHz
0.4dB 10.249MHz 17.8µs 572.67 8.941kHz
0.5dB 10.24105MHz 18.33µs 589.73 8.683kHz

Table 9.2: Ultimate phase noise and related variables @ various open loop gains

Gain NFres NFsystem P signal Lultimate
0.1dB 4.544dB 14.197dB 11.85dBm -174.62dBc
0.2dB 4.522dB 14.112dB 13.99dBm -176.88dBc
0.3dB 4.522dB 14.014dB 14.31dBm -177.30dBc
0.4dB 4.544dB 13.994dB 15.06dBm -178.12dBc
0.5dB 4.522dB 13.818dB 14.89dBm -178dBc

Assuming that the noise power entering the resonator has a white spectrum, these

approximations, at the indicated levels of amplifier saturation, will be depicted by

the dashed lines in the following figures. (Figures 9.14 to 9.18) The solid lines

in figures 9.14 through 9.18 represent the measured phase noise at these amplifier

saturation levels.

First consider the scenario where the amplifier is operating less than 0.1 dB into

compression. Here the amplifier operates in a near linear fashion and only allows

for very small frequency harmonics to be present at the oscillator’s output and,

therefore, in the oscillating loop as well. This means that very little of the noise

present near integer multiples of the oscillation frequency, is capable of being mixed

down into the frequency band around the desired oscillating frequency. In this

case Leeson’s model should be a very accurate approximation of the actual phase

noise of the oscillator. The measured phase noise, as well as that predicted by

Leeson’s model for this scenario, are illustrated in figure 9.14. As can be seen, the

model correctly approximates the ultimate phase noise. However, it does not make

provision for the effect that the transistors’ flicker noise has on the measured phase

noise. Had the flicker noise corner frequency been known before the measurement

was taken, it could have been taken into account. Here, however, the point was not

to determine the flicker corner frequency from the measured data, but to predict

what the measured phase noise spectrum would look like using only Leeson’s model.

Figure 9.14 clearly shows that at offset frequencies greater than 1 kHz the model is

indeed very accurate, with a slight discrepancy between the measured and predicted



CHAPTER 9. EXPERIMENT 6: 90

10
1

10
2

10
3

10
4

10
5

10
6

−180

−160

−140

−120

−100

−80

−60

−40
Phase noise @ less than 0.1 dB amplifier saturation

frequency [Hz]

P
ha

se
 n

oi
se

 [d
B

c/
H

z]

 

 
measured
predicted

Figure 9.14: Measured and predicted phase noise @ 0.1 dB amplifier saturation

results in the offset frequency region of 3 kHz to 50 kHz. This discrepancy can be

attributed to the phase noise of the FSUP8 being greater than that of the oscillator

in this region. At offset frequencies smaller than 1 kHz the effect of the previously

mentioned flicker noise becomes apparent and the measured phase noise starts to

diverge from that which was predicted.

Figures 9.15 through 9.18 demonstrate how the measured and predicted phase noise

differ by an increasing degree as the level of saturation, within which the amplifier

is operating, is increased. This deviation is especially apparent at offset frequencies

closer to the carrier, as is illustrated by figure 9.19.

It can also be seen that measurement errors, resulting from phase noise of the mea-

surement equipment, become more pertinent as the level of saturation is increased.

(Although this is more likely as a result of the oscillators’ ultimate phase noise being

lower than that of the measurement equipment, than as a result of any mixing pro-

ducts that can occur.) Also note that the loop bandwidth of the FSUP8’s PLL was

set to 100 Hz and that it is possible for mixer pulling to have an effect upon the

measured phase noise at offset frequencies smaller than this bandwidth.
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Figure 9.15: Measured and predicted phase noise @ 0.2 dB amplifier saturation
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Figure 9.16: Measured and predicted phase noise @ 0.3 dB amplifier saturation
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Figure 9.17: Measured and predicted phase noise @ 0.4 dB amplifier saturation
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Figure 9.18: Measured and predicted phase noise @ 0.5 dB amplifier saturation
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Figure 9.19: The deviation between the measured phase noise and that predicted by

Leeson’s model at offset frequencies of 1 MHz and 800 Hz.

9.3 Conclusion

When the amplifier is operating within 0.1 dB of compression, Leeson’s model pro-

vides a very accurate approximation of the measured phase noise. Even when ope-

rating within 0.2 dB of compression, this approximation is still good. Figures 9.14

through 9.18, however, demonstrates that this model rapidly loses accuracy as the

amplifier is driven deeper into saturation. In other words, the effective noise figure,

mentioned in chapter 3.4, becomes larger as the amplifier, or active device, is driven

deeper into saturation. This is attributed to an increase in the magnitude of the

oscillator’s harmonics as saturation sets in, which subsequently allows for noise at

frequencies near these harmonics to be mixed into the frequency band around the

oscillation frequency of interest.

Should a very accurate circuit model of the oscillator network be available, it would

be possible to determine the Leeson frequency through simulation. Such a model

would, however, have to factor in the effects of transmission paths upon the phase

deviation within the network. This implies that the smaller the oscillator loop

(physically), the greater the likelihood of an accurate model being obtained.

The method discussed in this chapter proved that using the open loop group delay

of the oscillator network is an accurate means of obtaining an oscillator’s Leeson
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frequency. It was also shown that, once the magnitude of the oscillator’s output

signal is known, it is possible to predict its ultimate phase noise. This is, however,

only valid when the oscillator’s active device is operating in a very linear manner

(within 0.2 dB of compression).

Note that no way was found to predict the magnitude of the oscillator’s output

signal. The author expected the magnitude of the output signal to be 13.72 dBm,

using the following argument: The 0.1 dB saturation point of the amplifier occurs at

an output signal magnitude of approximately 17 dBm, as shown in Appendix D.2.

The loss of the power divider that follows this amplifier in the oscillator network

is 3.28 dB. Therefore, if the amplifier is operating within 0.1 dB of saturation, as

was determined in the experiment, the magnitude of the output signal should be

17 dBm− 3.28 dBm = 13.72 dBm, and not 11.85 dBm as was measured.

This does not, however, negate the fact that circumstances have been identified

under which Leeson’s model may be considered valid and accurate for both high Q

(this chapter) and low Q (the previous chapter) oscillator networks.



Chapter 10

Final Conclusions and Future

Work

10.1 Conclusions

The focus of this project has been to identify conditions under which Leeson’s model

could be considered accurate without the use of an effective noise figure, thereby

validating Leeson’s model and providing greater insight into the mechanism that

leads to the occurance of phase noise in oscillators. This was accomplished by means

of the execution of the previously discussed experiments, from which the following

conclusions can be drawn.

An oscillator of which the active device is operating deep within saturation (nonli-

near operation), will have a greater output signal magnitude than a more linearly

operating oscillator (an oscillator of which the active device is not driven as dee-

ply into saturation). This may lead to the impression that nonlinearly operating

oscillator networks have better phase noise performance than their more linearly

operating counterparts, since phase noise is measured relative to the magnitude of

the oscillator’s output signal. This observation does not, however, take into account

the fact that the effective noise figure increases as the active device is driven deeper

into saturation. This increase in effective noise figure is greater than the increase in

the magnitude of the oscillator’s output signal. It therefore stands to reason that

a linearly driven oscillator will have phase noise performance superior to that of

a nonlinearly driven oscillator with the same output signal magnitude. This was

observed in chapter 4 and proved in chapter 5.

In the experiments following these it was shown that Leeson’s model best approxi-

95
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mates an oscillator network of which the active device is operating at less than 0.1

dB of saturation, for oscillators with both high Q and low Q resonators. It was

also demonstrated that Leeson’s model rapidly loses accuracy as the active device

is driven deeper and deeper into compression. A significant deviation between the

measured phase noise and that predicted by Leeson’s model is already apparent at

saturation levels of 0.5 dB.

This deviation, or increase in effective noise figure, was attributed to noise situated

near integer multiples of the oscillation frequency being mixed down into the fre-

quency band near the oscillating frequency where it is affected by the Leeson effect.

The greater the level of saturation within which the active device is operating, the

greater the magnitude of the oscillator’s harmonics will be and, subsequently, the

greater the effect of the noise situated around these harmonics will be on the measu-

red phase noise. By eliminating the harmonics within the oscillator loop, the effect

of the noise, situated near these harmonics, upon the phase noise, is also eliminated.

Two ways of limiting these harmonics were demontrated during the course of these

experiments. One was to design an amplifier which was capable of handling a large

input signal without being driven into saturation. The second was to limit the loop

gain within the oscillator network, by means of additional attenuation. As long as

the amplifier is operating on the edge of saturation, the harmonics generated by the

oscillator will be small and their effect upon the phase noise minimal.

The experiments also illustrated that the open loop group delay of the oscillator

network allows for an accurate method of determining the oscillator’s Leeson fre-

quency.

To conclude: Leeson’s model is valid when the oscillator network being considered

is driven in it’s most linear manner. It provides a very accurate approximation of

the measured phase noise when the level of saturation within which an oscillator’s

active device is operating is less than 0.2 dB, but rapidly looses accuracy as the level

of saturation increases beyond this point.

10.2 Future Work

A clear route for the design of very low phase noise loop oscillators was established

in this thesis. By ensuring that the loop amplifier has a very low noise figure and

that it operates within its linear region while producing the required output power,

the flicker noise and noise at harmonic frequencies of the active device is suppressed.
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Driving an oscillator network in such a manner as to ensure that its active device

never exceeds a saturation level of 0.1 dB can be problematic. This is due to the

fact that the gain of most amplifiers varies as the temperature fluctuates. The

design of a loop oscillator, of which the loop gain can be limited to less than 0.1 dB,

should therefore be investigated. This could be realised by using a gain comparator

in conjunction with an electronically controlled linear attenuator. Care should be

taken to ensure that the oscillator is driven by a clean power supply, free of source

noise. In order to further improve the phase noise of such an oscillator, a high Q

resonator should be used.
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Appendix A

The Modules Used in Experiment

1

A.1 Cascode Amplifier

A simplified cascode amplifier, where biasing networks are neglected and which has

the advantages of having high gain and bandwidth, is shown in figure A.2. These

traits of cascode amplifiers are explained as follows.

The transistor Q1 operates in common emitter configuration and therefore will have

a gain of -gm1RL, where RL is the load impedance of the common emitter amplifier

and gm1 the transconductance of the transistor Q1. Transistor Q2, on the other

hand, functions in a common base configuration and therefore will have an input

impedance of 1
gm2

, where gm2 is the transconductance of transistor Q2. If we assume

that transistors Q1 and Q2 are matched, then gm1 is equal to gm2 and the voltage

gain of Q1 will be unity. The voltage gain of a cascode amplifier must therefore be

Figure A.1: Cascode amplifiers

A–1
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L o a d
Q 2

Q 1

Figure A.2: Simplified BJT cascode amplifier

provided by the common base configured transistor, while the current gain is supplied

by the transistor in common emitter configuration. Now consider the Miller effect.

The Miller capacitance is defined as:

CMiller = CBC (1− Av) (A.1)

Where CBC is the base-collector capacitance and Av is the transistor’s voltage gain.

This means t,hat the Miller capacitance for a cascode amplifier reduces to twice

that of the base-collector capacitance of Q1. There is no Miller multiplication for

transistor Q2 since its gain is non-inverting and the collector-emitter capacitance

is negligible. This inevitably results in greater bandwidth [5]. The amplifier’s slew

rate, and therefore the phase shift between its input and output ports, is also reduced

as a result of this.

A.1.1 Design and Simulation

A cascode amplifier was designed to have gain of approximately 25 dB and a collector

current of nearly 30 mA, the maximum collector current allowed for the BFR90A.

The schematic diagram is shown in figure A.3. The matching L-section at the

amplifier’s input is not shown in the schematic, but comprises a series inductor of

approximately 5 µH and a shunt capacitor of 82 pF . Simulations indicate that

this design should have a gain of almost 29 dB, as is shown in figure A.4. It should

be noted at this point that the previously mentioned L-section severely reduces the

amplifier’s bandwidth, as is also apparent in figure A.4. The benefit of minimised

phase deviation, shown in figure A.5 is, however, not lost - as would have been the

case for a common emitter amplifier with similar gain and bandwidth. Figure A.6
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indicates that both the input and output ports should be well matched to the rest

of the system.
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Figure A.3: Schematic diagram of cascode amplifier
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Figure A.4: Cascode amplifier: simulated gain
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Figure A.5: Cascode amplifier: simulated phase deviation

A.1.2 Measurements and Conclusions

Two amplifiers, one for the system acting as DUT and one for the reference system,

were built subsequent to the design. These were measured and the results are

discussed below.

The input and output reflection coefficients for both amplifiers are illustrated in

figure A.7 and figure A.8 respectively. These measurements, performed on a cali-

brated vector network analyser (VNA), indicate that the port matching at both the

input and output ports is not as good as those simulated. This could be attributed

to unaccounted parasitic components of the various elements. It should be noted,

however, that for both amplifiers less than one tenth of the signals at both the in-

put and the output ports is reflected. The ports could therefore still be considered

matched to 50 Ω.

Figure A.9 shows the gain and bandwidth of both amplifiers. It shows that, although

the bandwidth of both amplifiers is about the same as that of the simulated amplifier,

the amplifier gains are nearly 3 dB less than the simulated gain. Amplifier A has

a maximum gain of 26 dB at 5.225 MHz and Amplifier B has a maximum gain of

26.5 dB at 5.225 MHz. The variations could be the result of differences between

the physical transistors and their simulated counterparts, as well as tolerances and

parasitic components of the different elements. The fact that the input ports are
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Figure A.6: Cascode amplifier: simulated input and output port matching

not as well matched as those of the simulated amplifier will also mean that less of

the input signal power will be amplified.

The phase shifts between the input and output ports of the amplifiers are depicted

in figure A.10. It is noteworthy that the phase deviation around 5 MHz is almost

linear and nearly the same as the simulated phase deviation.

Figure A.11 shows the output power as a function of the input power for both

amplifiers. The dotted lines in the graph indicate the linear increase in output

power against input power should the amplifiers not go into saturation. From this

graph the 1 dB compression point of both amplifiers can be obtained. For Amplifier

A the input 1 dB compression point is -14.85 dBm and for Amplifier B this point is

at -16.15 dBm.

It can therefore be concluded that both amplifiers are sufficiently matched to 50 Ω,

and that they have enough gain for our purposes. The phase shifts between the

input and output ports are minimal. The amplifier bandwidths are great enough

not to be a deciding factor in the oscillator circuits’ resonance frequencies.
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Figure A.7: Cascode amplifier: measured input port matching
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Figure A.8: Cascode amplifier: output port matching
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Figure A.9: Cascode amplifier: measured gain and bandwidth
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Figure A.10: Cascode amplifier: measured input output phase deviation
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Figure A.11: Cascode amplifier: input power vs. output power

Figure A.12: Wilkinson power dividers used in experiment 1

A.2 Wilkinson Power Divider

The traditional Wilkinson power divider is shown in figure A.13. It consists of

two transmission lines of length L = λ
4
, where λis the wavelength of the operating

frequency, with a characteristic impedance of Z1 =
√

2Z0, where Z0. Z0 is the

characteristic impedance of the ports to be matched. The signal enters at port 1

and is then equally divided between ports 2 and 3. The quarter wave transformer

action of these transmission lines, in conjunction with the resistor connecting their

outputs, provides good port matching at all 3 ports, as well as isolating the two
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Figure A.13: Wilkinson power divider

output ports from each other. This can be verified by performing even and odd

mode analysis on the circuit[1].

The traditional approach to Wilkinson power divider design using transmission lines

will, however, not suffice for 5 MHz applications. This is due to the fact that

the wavelength of a 5 MHz signal is nearly 60 meters. The problem is, however,

easily fixed by designing an LC Wilkinson power divider[20]. LC Wilkinson dividers

function on the same principles as their transmission line counterparts. They differ

only in the sense that the transmission lines are replaced by LC networks like the ones

shown in figureA.14. A quarter wave transmission line equivalent can be designed

by setting the element values as follows:

Cp =
1

2πf0Z
(A.2)

Ls =
Z

2πf0

(A.3)

where Z is the characteristic impedance of the transmission line to be emulated in

ohms and f 0 is the operating frequency in hertz. The values of Cp and Ls are,

respectively, calculated in farads and henries.

A.2.1 Design and Simulation

Figure A.15 shows a schematic diagram of an LC Wilkinson power divider. The

values of Ls and Cp, for a 5 MHz divider with a characteristic impedance of Z0 = 50Ω

were calculated using equations A.2 and A.5 and are listed below. Please note that
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Figure A.14: Quarter wave equivalent LC network

C p

C p

2 C p

L s

L s 2 Z 01

2
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Figure A.15: LC wilkinson power divider

the value of Z in these equations is
√

2Z0.

Cp = 450pF

Ls = 2.25µH

In order to simplify the manufacturing of the dividers, 470 pF ceramic capacitors

were used, since these capacitors are readily available and have high quality factors.

The inductors were turned on T50-2 toroids from Micrometals. Their inductances

were measured and all found to be approximately 2.2 µH. Subsequently the entire

design was simulated in Microwave Office (MWO) and the results shown in figures

A.16, A.17, A.18 and A.19 were obtained.
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Figure A.16: The simulated normalised power delivered at the output ports of the divider

shown against frequency.
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Figure A.17: The simulated phase deviation from input to output against frequency.
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Figure A.18: The simulated isolation factor between the output ports against frequency.
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Figure A.19: The simulated reflection coefficient at all three ports
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As can be seen from the simulated results, the LC Wilkinson divider acts exactly

like its transmission line counterpart at 5 MHz. According to the simulations less

than 0.01% of the signal present at the measurement device is expected to leak into

the oscillator. It is also shown that all three ports are well matched to 50Ω and that

the input power is divided equally between the two output ports.

A.2.2 Measurements and Conclusions

Once satisfied with the simulated results, two LC Wilkinson power dividers were

built, one for each of the two oscillator circuits mentioned earlier. These were mea-

sured using a vector network analyser from Rohde and Schwarz. The measured

results for the two dividers are compared in figures A.20, A.21, A.22 and A.23.

In both cases the ports are well matched to 50Ω, the S11-parameter even exceeds

the simulated results in MWO. This can be attributed to component losses, since

the resistive losses of the capacitors and inductors were not taken into consideration

during the simulation of the divider. Furthermore it can be seen that the two

dividers are nearly identical in their performance, with only slight variations in their

port matching and phase deviation results. One should also note that the output

port isolation is not as good as the simulations would suggest. Once again, this can

be attributed to component losses. However, with less than a thousandth of the

signal power present at the measurement device leaking into the oscillator circuit,

the isolation factor is more than adequate for the purposes of the experiment.
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Figure A.20: The measured normalised power delivered at the output ports of the divider

shown against frequency.



APPENDIX A. THE MODULES USED IN EXPERIMENT 1 A–14

1 2 3 4 5 6 7 8 9 10
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0
Phase variations of the power divider vs frequency

frequency [MHz]

P
ha

se
 S

hi
ft 

[d
eg

re
es

]

 

 
from port 1 to port 2
from port 1 to port 3

1 2 3 4 5 6 7 8 9 10
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0
Phase variations of the power divider vs frequency

frequency [MHz]

P
ha

se
 S

hi
ft 

[d
eg

re
es

]

 

 
from port 1 to port 2
from port 1 to port 3

LC Wilkinson divider A LC Wilkinson divider B

Figure A.21: The measured phase deviation from input to output against frequency.
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Figure A.22: The measured isolation factor between the output ports against frequency.
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Figure A.23: The measured reflection coefficient at all three ports

A.3 270o Phase Shift Network

Figure A.24: 270o Phase shifters

A.3.1 Design and Simulation

The design of a 270o phase shift network is shown in figure A.25. The values of Cs

and Lp are defined as follows:

Cs =
1

2πf0Z
(A.4)

Lp =
Z

2πf0

(A.5)

where Z is the characteristic impedance of the transmission line to be emulated

defined in Ω and where f 0 is the operating frequency. Cs and Lp are calculated

in farads and henries respectively. In the case of a 5 MHz phase shifter with a
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Figure A.25: 3
4 Wavelength transmission line LC equivalent circuit
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Figure A.26: Simulated reflection coefficient 3
4 wavelength transmission line equivalent

characteristic impedance of 50 Ω, the capacitor and inductor values equates to the

following:

Cs = 636.3pF

Lp = 1.59µH

In order to simplify the manufacturing of the LC network, Cs is set to 680 pF,

a readily available ceramic capacitor value. The inductors were turned on T50-2

toroids from Micrometals and their inductances tuned to 1.59µH. The network

provides a near 270o phase shift, which should cancel out the phase shift resulting

from the power divider. This can be seen in figure A.28. The network also allows

for nearly all of the applied signal power to be passed at the operating frequency,

while maintaining good port matching (reflection coefficients better than -20dB) at

this frequency. This is illustrated at the hand of figures A.27 and A.26.
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Figure A.27: Simulated pass band of 3
4 wavelength equivalent.
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Figure A.28: Simulated phase deviation of 3
4 wavelength equivalent against frequency.
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Figure A.29: Measured reflection coefficient 3
4 wavelength transmission line equivalent

A.3.2 Measurements and Conclusions

Two networks were built in accordance with the previously described design and

measured using a Rohde and Schwarz VNA. The measurements are shown in figures

A.29, A.30 and A.31, and the two LC networks are compared.

Measurements show that the LC networks are almost identical in their performance.

The measured results differ slightly from those simulated. This can be attributed to

component tolerances as well as losses that were not considered during simulation.

To conclude: the LC networks are functional and will work well for the intended

phase shifts in the respective oscillator circuits.
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Figure A.30: Measured pass band of 3
4 wavelength equivalent.
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Figure A.31: Measured phase deviation of 3
4 wavelength equivalent against frequency.
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A.4 Π-Attenuators

Figure A.32: Attenuators used

A Π-attenuator like the one in figure A.33 can be designed by using the following

equations:

R2 =
1

2

(
10

L
10 − 1

)√ Z2
0

10
L
10

(A.6)

R1 =

 10
L
10 + 1

Z0

(
10

L
10 − 1

) − 1

R2


−1

(A.7)

where R1 and R2are resistor values calculated in ohms, L is the desired attenuation

factor in dB and Z0 is the characteristic impedance of the system to which the

attenuator must be matched in ohms. Four such π-attenuator circuits, two 3 dB, an

11 dB and a 15dB attenuator were designed and built. These were measured and

the results are shown in figures A.34 to A.42. The measurements show that all the

attenuators are well matched to 50 Ω and that they would add very little phase shift

to the rest of the oscillator circuit. Less than one degree of phase shift was measured

at 5 MHz for all four attenuators.

Figure A.33: Schematic diagram of a π-attenuator
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Figure A.34: 3 dB Attenuator port matching
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Figure A.35: 3 dB Attenuator losses
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Figure A.36: 3 dB Attenuator phase deviation
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Figure A.37: 11 dB Attenuator port matching
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Figure A.38: 11 dB Attenuator loss
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Figure A.39: 11 dB Attenuator phase deviation
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Figure A.40: 15 dB Attenuator port matching

2 4 6 8 10 12 14 16 18 20
−20

−19

−18

−17

−16

−15

−14

−13

−12

−11

−10
15dB Attenuator loss

frequency [MHz]

M
ag

ni
tu

de
 [d

B
]

Figure A.41: 15 dB Attenuator loss
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Figure A.42: 15 dB Attenuator phase deviation

The Mini-Circuits Attenuators Datasheets are shown in Appendix B and indicate

that these attenuators are suitable for the purposes of the experiment.

A.5 Π-Resonator

Design and Simulation

There are various resonators to choose from. Given the relatively low operating

frequency of the oscillator circuits, it was decided upon using an LC resonator in a

Π-configuration, like the one shown in figure A.43. Two resonators were designed.

One fixed, for the DUT circuit, and the other voltage adjustable, to serve in the

reference circuit. First consider the fixed resonator.

The design begins with a simplified model like the one shown in figure A.44. Assume

that the unloaded Q of the resonator will effectively be determined by the Q of the

inductor. This assumption is valid, since the Q of inductors wound around iron

powder cores, like the T50-2 toroids that were used, will typically have a Q of 200

to 250, whereas the Q’s of the capacitors used will typically be of the order 1000

to 5000. The following equations can be used to design a Π-resonator like the one
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Figure A.43: LC Π-resonator schematic

Figure A.44: Simplified Π-resonator schematic

shown in figure A.44[6].

XCp′ =
R′

QU

(A.8)

XL =
2R′QU

Q2
U + 1

(A.9)

where XCp′ is the impedance value of of the parallel capacitor and XLis the impe-

dance value of the series inductor in Ω. In [6] it is assumed that the R′ resistors are

the only resistors degrading the resonator’s Q. In reality there is, however, another

resistance value in parallel with the inductor. If we now design the resonator so that

R′ is equal to half this resistance, the resistor on the left in figure A.44 will see an

impedance equal to three times that of its own impedance. By a similar argument

the same will be true for the resistor on the right in figure A.44. This implies that

the criterion for minimum phase noise, previously derived in Chapter 4.2.5, will be

achieved.
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Table A.1: Component values of the nonadjustable resonator

Component value unit

R 50 Ω
Cs 39 pF
Cp 428 pF
L 4.05 µH

An inductor was turned with an inductance of L = 4.05µH and a Q of 250 at 5

MHz. This implies, that for the resonator to perform optimally in terms of phase

noise, R′ must be approximately 15.9 kΩ. From equation A.8, Cp′ ' 500pF can be

calculated.

Since the resonator has to function in a 50 Ω system, R′ ' 15.9kΩ must be trans-

formed to R = 50 Ω. It should be noted at this point that the schematic diagram in

figure A.43 can be transformed into the one in figure A.44 by means of the following

equations:

Qe =
1

ω0 ×R× Cs
(A.10)

R′ = R
(
1 +Q2

e

)
(A.11)

X =
R′

Qe

(A.12)

C1 =
1

ω0X
(A.13)

Cp′ = C1 + Cp (A.14)

These equations enable the transformation of R and Cs into their parallel equivalents

R′ and C1. They therefore allow for the calculation of Cs and Cp. In order to simplify

the building of the resonator, the values in table A.1 were chosen for the components

in figure A.43. Note that R is the characteristic impedance of the system.

The resonator was simulated in MWO and the results are shown figures A.45 through

A.47. Since the circuit is symmetrical, the reflection coefficients at both the input

and the output ports are the same. This is illustrated in figure A.45. In this figure

it can be seen that, at just over 5 MHz, there are reflection coefficients of nearly -6

dB. In other words, almost a quarter of the signal power at the ports is reflected

back. This implies that a quarter of the available power is dissipated in the source

and another quarter in the load, which means that half of the signal power must be

dissipated in the resonator.

The pass band of the resonator denotes a loaded Q of approximately 107, and phase

deviation between the input and output ports varies by ±80o across the pass band.
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Figure A.45: Simulated fixed resonator: port matching

Next consider the design of the voltage adjustable resonator. The same consideration

must be given in terms of the quality factor. For this reason a design similar to

that of the fixed resonator was opted for. Two BB804 varactor diodes are used

in parallel with capacitor networks, as is shown in figure A.48. This allows the

resonance frequency to be adjusted as the voltage, V, over the varactor is varied.

The capacitance of the varactor can vary between 26 pF and 42 pF; this implies a

relatively small band across which the resonance frequency can be adjusted. It also

implies that the variations in the port matching and the pass band of the adjustable

resonator will vary only slightly compared with that of the fixed resonator. This

can be verified by means of simulation as is shown in figures A.50 and A.51. It

can be seen that for a varactor biasing voltage of 10 V the resonance frequency of

the adjustable resonator is higher than that of the fixed resonator. Whereas for a

varactor biasing voltage of 2 V, its resonance frequency is lower than that of the

fixed resonator. This means that the reference oscillator will be capable of tracking

the DUT in the experiment detailed in the next section. In both these figures it can

also be seen that the magnitude of both the reflection coefficients as well as the peak

of the pass band differ by approximately 1 dB between that of the fixed resonator

and that of the adjustable resonator. This can be considered a very small difference

in magnitude, which means that the adjustable resonator complies to a large degree

with the previous criterion for a minimum phase noise level.
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Figure A.46: Simulated fixed resonator: pass band
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Figure A.47: Simulated fixed resonator: phase shift between input and output ports
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Figure A.48: Schematic diagram of voltage adjustable resonator

Figure A.49: Adjustable resonator

Care must be taken in choosing the resistor values between the tuning voltage and

the varactors shown in figure A.48. They must be large enough to provide isolation

between the resonator and the tuning voltage and so as not to degrade the resonator’s

quality factor, and small enough not to add an extra noise component to the circuit.

It should be noted that both the input and output ports in figure A.48 are terminated

in networks with a characteristic impedance of 50 Ω.

A.5.1 Measurements and Conclusions

Both of these resonators were built and measured. The results are shown in figures

A.52 to A.55. Figure A.52 indicates that the fixed resonator has a reflection coeffi-
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Figure A.50: Comparison of port matching of fixed and adjustable resonators
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Figure A.51: Simulated comparison of resonance frequencies of fixed and adjustable

resonators
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cient of approximately 6.5 dB. This is very close to the desired reflection coefficient

of 6 dB, implying that almost a quarter of the available signal power is reflected at

both the input and output ports. The phase variation between the input and output

ports, as well as the resonance frequency shown in figure A.53, are also correlated

with their simulated counterparts. In other words: the fixed resonator adheres to

the criterion for a minimum phase noise level and its physical performance is close

to that which was simulated .
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Figure A.52: Measured fixed resonator port matching
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Figure A.53: Measured resonance frequency of fixed resonator

In figure A.54, measurements for different varactor biasing voltages are shown on the

same graph, which illustrates how the resonance frequency changes as the biasing

voltage varies. The phase shift between output and input, also shown figure A.54,

does not vary to the same degree against frequency for the different biasing voltages

as does the S21 magnitude of the resonator. The amount by which it is off is,

however, negligible since this resonator is intended for use in an oscillator which is

to be phase locked with our DUT.
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Figure A.54: Resonance frequency of adjustable resonator for various varactor biasing

voltages

Figure A.55 illustrates that for a varactor biasing voltage of 10 V, the resonance

frequency of the adjustable resonator is higher than that of the fixed resonator and

for a biasing voltage of 0V it is far lower than the resonance frequency of the fixed

resonator. This means that the voltage controlled oscillator will indeed be capable

of tracking the DUT.
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Figure A.55: Measured comparison of resonance frequencies of fixed and adjustable

resonators.
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The +Suffix has been added in order to identify RoHS 
Compliance. See our web site for RoHS Compliance 
methodologies and qualifications.

Electrical Schematic

FEMALEMALE R1

R2

R3

Permanent damage may occur if any of these limits are exceeded.
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Attenuation
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VSWR
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Typical Performance Data

Electrical Specifications 

Maximum Ratings
Operating Temperature 	 -45°C to 100°C

Storage Temperature 	 -55°C to 100°C

Outline Drawing
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* Attenuation varies by 0.3 dB max. over temperature.
** Flatness= variation over band divided by 2.

Features
• wideband coverage, DC to 6000 MHz
• 1 watt rating
• rugged unibody construction
• off-the-shelf availability
• very low cost

Applications
• impedance matching
• signal level adjustment

FREQ.
RANGE
(MHz)

ATTENUATION *
(dB)

              Flatness **

VSWR
(:1)

MAX.
INPUT 

POWER

DC-3 GHz 3-5 GHz 5-6 GHz DC-6 GHz DC-3 GHz 3-5 GHz 5-6 GHz (W)

fL--fU Nom. Typ. Typ. Typ. Typ. Typ. Max. Typ. Max. Typ.

DC-6000 6±0.3 0.15 0.10 0.20 0.45 1.05 1.20 1.15 1.45 1.50 1.0

CASE STYLE: FF704

Connectors	 Model	 Price	 Qty.
SMA	 VAT-6+	 $11.95 ea.  (1-9)
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	 50.00	 6.01	 1.00
	 100.00	 6.02	 1.01
	 500.00	 6.10	 1.02
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+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS 
Compliance. See our web site for RoHS Compliance 
methodologies and qualifications.

Electrical Schematic

FEMALEMALE R1

R2

R3

Permanent damage may occur if any of these limits are exceeded.
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Coaxial

B D E wt
.410 1.43 .312 grams
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* Attenuation varies by 0.3 dB max. over temperature.
** Flatness= variation over band divided by 2.

Features
• wideband coverage, DC to 6000 MHz
• 1 watt rating
• rugged unibody construction
• off-the-shelf availability
• very low cost

Applications
• impedance matching
• signal level adjustment

FREQ.
RANGE
(MHz)

ATTENUATION *
(dB)

              Flatness **

VSWR
(:1)

MAX.
INPUT 

POWER

DC-3 GHz 3-5 GHz 5-6 GHz DC-6 GHz DC-3 GHz 3-5 GHz 5-6 GHz (W)

fL--fU Nom. Typ. Typ. Typ. Typ. Typ. Max. Typ. Max. Typ.

DC-6000 10±0.3 0.10 0.20 0.15 0.35 1.05 1.25 1.20 1.60 1.90 1.0

CASE STYLE: FF704

Connectors	 Model	 Price	 Qty.
SMA	 VAT-10+	 $11.95 ea.  (1-9)

	

	 0.03	 10.06	 1.00
	 50.00	 10.01	 1.01
	 100.00	 10.02	 1.00
	 500.00	 10.06	 1.01
	 1000.00	 10.06	 1.02	
	 2000.00	 10.01	 1.03
	 3000.00	 9.89	 1.07
	 4000.00	 9.60	 1.19
	 5000.00	 9.51	 1.31
	 6000.00	 9.69	 1.50

Electrical Schematic

+ RoHS compliant in accordance 
    with EU Directive (2002/95/EC)
The +Suffix has been added in order to identify RoHS 
Compliance.  See our web site for RoHS Compliance 
methodologies and qualifications.

FEMALEMALE R1

R2

R3

Permanent damage may occur if any of these limits are exceeded.



Appendix C

Hardware Used in Experiment 2

and Experiment 3

C.1 Resistive Feedback Amplifier

A schematic of a resistive feedback amplifier, like the one used in Experiment 2

and Experiment 3, is shown in figure C.2. The component values that were used

are shown in table C.1. The collector and base reference voltages, V C and V B, are

provided by two separate voltage regulators. V C was set to 6V and V B was adjusted

to 1.9V. The design was adapted from a similar amplifier illustrated in [6]. The

measured results are shown in figures C.3 through C.8. These measurements confirm

that this amplifier is well matched at both ports, figures C.3 and C.4, and that the

isolation between these ports is acceptable at less than -15dB as is illustrated in figure

C.6. The measurements also indicate that the amplifier can handle a relatively high

input power, 7 dBm, before being driven into saturation, as is illustrated in figure

Figure C.1: Resistive feedback amplifier

C–1
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C.8. Figure C.7 shows that the amplifier’s gain stays almost constant up to this

input power level.

Table C.1: Component values of the resistive feedback amplifier.

Component Value

RC 22Ω
RB 100Ω
RE 27Ω
Rfb 270Ω
Cfb 100nF
Cin 100nF
Cout 100nF

Figure C.2: Schematic of resistive feedback amplifier
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Figure C.3: Resistive feedback amplifier:input port matching
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Figure C.4: Resistive feedback amplifier: output port matching
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Figure C.5: Resistive feedback amplifier: gain vs frequency
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Figure C.6: Resistive feedback amplifier:isolation between the input and output ports
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Figure C.7: Resistive feedback amplifier: gain vs input power
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Figure C.8: Resistive feedback amplifier: output power vs input power
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Figure C.9: Amplifier without feedback used in experiment 2

C.2 Amplifier without Feedback

The feedback resistor and capacitor of an amplifier identical to the one described

in Appendix C.1, were removed. The base biasing voltage was adjusted and the

amplifier was subsequently measured. The results are illustrated in figures C.10

through C.12.

The measurements indicate that the amplifier is poorly matched and that its gain

is approximately 5 dB higher than that of the amplifier with feedback.
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Figure C.10: Amplifier without feedback: input port matching
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Figure C.11: Amplifier without Feedback: Amplifier Gain
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Figure C.12: Amplifier without Feedback: Phase Deviation
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Figure C.13: 10 MHz LC resonator

C.3 10 MHz Resonator

During the design the same procedure discussed in Appendix A.5 was followed, with

the exception that the resonator was then resistively matched to 50Ω. The schematic

diagram of the resonator is shown in figure C.14 and its component values are listed

in table C.2.

Table C.2: Component values of the 10 MHz matched resonator

Component Value

L 1.4µH
Cs 33pF
Cp 300pF
R 120Ω

The resonator was measured and the results are shown in the following figures. These

figures clearly indicate that the resonator is well matched at both ports. Figure C.16

also indicates that the resonator performs very close to the criteria for optimal phase

noise. Roughly 8 dB of the input power is dissipated within the resonator at the

resonant frequency. This may be considered close to the optimal level of 6 dB.

Figure C.14: 10 MHz LC resonator with resistive matching
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Figure C.15: 10 MHz resonator: port matching
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Figure C.16: 10 MHz resonator: magnitude and phase response
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Figure C.17: 10 MHz Wilkinson power divider

C.4 10 MHz Wilkinson Divider

The same principles discussed in Appendix A.2 for LC Wilkinson power dividers

apply here and a 10 MHz Wilkinson Power Divider was designed accordingly. The

measured results are shown in figures C.18 through C.21 and illustrate that the

divider functions admirably.
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Figure C.18: 10 MHz LC Wilkinson power divider: port matching
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Figure C.19: 10 MHz LC wilkinson power divider:
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Figure C.20: 10 MHz LC Wilkinson power divider: output port isolation
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Figure C.21: 10 MHz LC Wilkinson power divider: phase deviation

Figure C.22: Phase shifter

C.5 Phase Shift Network

The design of the 68o phase shifter starts off with the quarter wave approximation

described in Appendix A.2. In order to change the resulting 90o phase shift to a 68o

phase shift an optimisation process was applied in MWO. This resulted in the values

Cp and Ls, defined in Appendix A.2, being set to 210 pF and 0.7 µH respectively.

This design was implemented and the measured results are shown in figures C.23

and C.24. These measurements indicate that the desired phase shift is achieved,
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Figure C.23: 68oPhase Shifter: port matching

that the network is well matched and that very few losses occur at the operating

frequency of 10 MHz.
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Figure C.24: 68oPhase shifter: magnitude and phase response

Figure C.25: Variable attenuator

C.6 Variable Attenuator

A resistive, variable attenuator was designed of which the schematic diagram is

illustrated in figure C.26. Resistors in the attenuator network can be switched in

and out of the network by means of placing or removing jumpers. The various

attenuation settings can be realised by placing the previously mentioned jumpers

as is indicated in table C.3. The respective jumper positions are indicated on the

schematic diagram of figure C.26.

The realised attenuative losses were measured for each of the attenuation settings

listed in table C.3 and are shown in figure C.27. The measurements show that these

losses closely approximate the attenuation settings which they were designed for.
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Figure C.26: Variable attenuator: schematic diagram

Table C.3: Variable attenuator: attenuation settings

Attenuation Jumpers Placed

0.1 dB 1
0.2 dB 1, 2
0.3 dB 2, 3
0.4 dB 2, 3, 4
0.5 dB 2, 4, 5
0.6 dB 2, 4, 5, 6
0.7 dB 2, 4, 6, 7
0.8 dB 2, 4, 6, 7, 8

(Within 0.05 dB.)

In figures C.28 and C.29, it is shown that the attenuator is well matched for all

attenuation settings at both its input and output ports.

Figure C.30 illustrates the variations in the phase shift from the input port to the

output port of the attenuator for the various attenuation settings. The variations

may be associated with the increase in the signal’s path length, as more resistors are

being switched into the network. At any specific frequency however, these variations

differ by no more than three degrees and may be considered negligible.

The attenuator described in this section allows for the adjustment of the amount

of its attenuation in steps of approximately 0.1 dB with very little phase deviation

between the various attenuation settings. This implies that, when used in an oscil-

lator network, this circuit will have a minimal effect upon the phase conditions for

oscillation.
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Figure C.27: Variable attenuator: attenuative losses
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Figure C.28: Variable attenuator: input port matching
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Figure C.29: Variable attenuator: output port matching
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Hardware Used in Experiments 4

to 6

D.1 SC-Cut Crystal Resonator

D.1.1 Design and Measurement

A crystal resonator was designed using an SC-cut crystal. A schematic of the reso-

nator is shown in figure D.2. Since the crystal can handle a maximum of 5 mW, it

was decided to couple to and from the crystal using transformers. In order to limit

the power absorbed in the crystal, resistive networks were used.

This resonator was built and subsequently measured. The measured results are

illustrated in figures D.3 through D.6. The high quality factor of the resonator and

the limitation of the measuring equipment’s resolution, resulted in the measured data

Figure D.1: Crystal resonator

D–1
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Figure D.2: Crystal resonator schematic
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Figure D.3: Crystal resonator: pass band

being discretised. This is depicted in figures D.3 through D.5 by the dashed lines.

In order to get a more realistic impression of the crystal resonator’s characteristics,

the measured data was smoothed using Matlab. These fitted results are illustrated

by the solid line in the last mentioned figures. Note that the measurements depicted

in figure D.6 are constructed from the fitted curves.

This resonator is matched at the resonant frequency and has a quality factor in

excess of 86 000. The quality factor is calculated using the formula

Q = πf0τg0 = 86799.6 (D.1)

where f 0 is the resonant frequency and τg0 is the group delay of the resonator at the

resonant frequency.
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Figure D.4: Crystal resonator: phase deviation
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Figure D.5: Crystal resonator: port matching
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Figure D.6: Crystal resonator: fitted group delay with regard to pass band

D.2 Modified Resistive Feedback Amplifier

In order to suppress the noise entering the oscillator from the voltage source or

regulators, the resistive feedback amplifier used in chapters 5, 6 and 7 was modified

as follows. The adjustable voltage regulator that had been connected to base side of

the amplifier was removed and replaced with a resistive divider network connecting

the base to the collector voltage. The amplifier therefore now runs from a single

voltage regulator. Before entering the network, the output voltage of this regulator

is passed through an operational amplifier circuit in order to suppress any random

noise fluctuations. The modifications are shown in figure D.7.

D.2.1 Measurements

The modified resistive feedback amplifier was subsequently measured. It was found

that both the input and output ports are sufficiently matched to 50 Ω, as is illustrated

in figure D.8. The isolation between the output and input ports, depicted in figure

D.9, is also more than adequate as less than one 40th of the output signal leaks

back. Figure D.10 shows that the modified amplifier has roughly the same gain as

the original and figure D.11 indicates a near linear phase deviation across the band

of interest. The modified amplifier’s 1 dB compression point is approximately the

same as that of the orginal. This can be obtained from figure D.12.
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Figure D.7: Modified resistive feedback amplifier schematic
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Figure D.8: Modified resistive amplifier: port matching
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Figure D.9: Modified resistive amplifier: port isolation
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Figure D.10: Modified resistive amplifier: amplifier gain
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Figure D.11: Modified resistive amplifier: phase deviation
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Figure D.12: Modified resistive amplifier: input power vs output power

Figure D.13: AT-cut crystal resonator

D.3 AT-Cut Crystal Resonator

D.3.1 Design and Measurements

The same design used in Appendix D.1 was used here again. The only difference

between the two resonators is that the SC-cut crystal is replaced here with an 10.245

MHz AT-cut crystal. The reason for this is to reduce the Q of the resonator in order

to be able to accurately measure the phase noise of the oscillators in which it is used.

This is explained in chapter 9.

The resonator was measured using ZVRE network analyser from Rohde & Schwarz

and the results are shown in the following figures. Figure D.14 illustrates the reflec-

tion coefficients at the input and output ports of the resonator and indicates that
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Figure D.14: AT-cut crystal resonator: reflection coefficients

the ports are well matched at the oscillating frequency. (10.245 MHz)

The pass band of the resonator is shown with respect to its phase deviation in figure

D.15. In figure D.16, the pass band is depicted with respect to the resonator’s group

delay. The pass band data is used in chapter 9 in order to determine the ultimate

noise floor of the oscillator in question. The measured group delay indicates that the

Q of this resonator is considerably lower than that of the SC-cut crystal resonator

discussed in Appendix D.1.
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Figure D.15: AT-cut crystal resonator: pass band and phase deviation
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Figure D.16: AT-cut crystal resonator:pass band and group delay
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