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An Analytical Model for the Power Spectral
Density of a Voltage-Controlled Oscillator and

Its Analogy to the Laser Linewidth Theory
Frank Herzel

Abstract—We calculate the output power density spectrum for
a simple voltage-controlled oscillator (VCO) circuit. The power
spectral density of the oscillator is composed of a term related
to the high-frequency fluctuations in the feedback loop and a
term related to the low-frequency fluctuations of the frequency
control voltage. The latter is treated stochastically in a similar
fashion to the inhomogeneous line broadening of gas lasers due to
the Doppler effect. This additional broadening causes a deviation
of the power spectral density from the Lorentzian shape, that
is, from the phase noise decay of�6 dB per octave. This is
specially pronounced at not-too-large frequency offsets. The anal-
ogy between electrical oscillators and optical oscillators (lasers)
allows the methods used in optical spectroscopy to be applied. The
approach may be employed to synthesize oscillator spectra from
the equivalent circuit parameters with small numerical effort.
Furthermore, it allows experimental power density spectra to
be decomposed into the contributions stemming from the high-
frequency noise in the feedback loop and the low-frequency noise
of the oscillation frequency. This should give better insight into
the origin of the phase noise. Besides VCO’s, this concept may
be useful for oscillators subject to Gaussian supply and substrate
noise.

Index Terms—FM noise, oscillator noise, phase noise, voltage-
controlled oscillators.

I. INTRODUCTION

VOLTAGE-CONTROLLED oscillators (VCO’s) are crit-
ical components of modern communication systems. In

particular, critical parameters of phase-locked loops, such as
spectral purity and power dissipation, strongly depend on the
VCO performance. The demands of international standards
such as GSM make low-phase-noise, low-power VCO’s a
topic of current interest [1]–[3]. Accurate modeling of the
phase noise of VCO’s requires substantial numerical effort
[4]. Therefore, a simple analytical model is desirable to
facilitate synthesis and analysis of the power spectral density
of VCO’s. This would also give insight into the dominant
noise mechanisms in the circuit.

There is a strong analogy between optical resonators (lasers)
and electrical oscillators as outlined below, whereby the vector
potential in a laser corresponds to the voltage in an electrical
oscillator. The aim of this paper is to analytically calculate the
oscillator line broadening by using the methods employed in
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Fig. 1. VCO model. The oscillation frequency is controlled by a fluctuating
voltageVC(t).

optical spectroscopy. The power spectral density is expressed
in terms of the oscillation frequency, the quality factor of
the passive resonator, the power consumed by the load, the
equivalent noise resistance in the feedback loop, the load
resistance, and the root-mean-square value of the oscillation
frequency or of the frequency control voltage, respectively.
We discuss the influence of these parameters on the oscillator
linewidth and on the relative phase noise.

This paper does not intend to give an overview of the
vast number of papers on oscillator phase noise. (For an
overview see [4].) Instead it focuses on how the Gaussian
noise of the control voltage may be incorporated into the phase
noise calculations. To the best of the author’s knowledge, this
problem has not yet been addressed so far. The algorithm
derived here may also be applied to oscillators subject to
Gaussian supply and substrate noise, since such oscillators can
be considered as VCO’s with purely stochastic control voltage.

II. THE OSCILLATOR MODEL

The passive resonator is modeled by a resistancede-
scribing the loss, a tunable capacitance with the
frequency control voltage, and an inductance, which gives
the impedance

(1)

as shown in Fig. 1. We model the active device by a real
negative resistance . The noise in the feedback loop is
described by the voltage source in series with and

. The spectral density is expressed by an equivalent
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noise resistance defined by

(2)

The resonance frequency of the passive resonator is con-
trolled by the voltage , which fluctuates. These fluctuations
give rise to fluctuations of the oscillation frequency.

So far, several approximations have been made. First, the
equivalent circuit for the passive resonator is relatively simple,
although it may be generalized by using a more complex
algebraic expression for . Second, the imaginary part of the
generator impedance is disregarded. Inclusion of the imaginary
part would, as in [5], shift the oscillation frequency, but leave
the linewidth unchanged. Third, the frequency dependence of

and has been neglected. This is a good approximation,
if the curvature of the gain (here described by ) as a
function of frequency is much smaller at the frequency of
oscillation than that of the passive resonator [5]. For typical
quality factors of passive electrical oscillators, this condition
is easily fulfilled.

III. T HE FIXED CONTROL VOLTAGE CASE

First, we neglect the fluctuations of . The power spectral
density of the voltage over the load is the Fourier
transform of the steady-state autocorrelation function, which
can be measured with a spectrum analyzer. According to
Fig. 1, the spectral density of the noise voltage over is
given by

(3)

Here, we have exploited the fact that the noise in a narrow
frequency range may be treated in the same fashion as in the
case of a small-signal analysis. After inserting we find

(4)

where

(5)

is the oscillation frequency

(6)

is the quality factor of the passive resonator, and

(7)

is the relative gain. As for lasers [5], the gain (here) must
be slightly smaller than the total loss (here ), otherwise the
power spectral density would diverge. As evident from (4), the
spectral density becomes very large at the oscillation frequency
if approaches . The narrow-bandwidth oscillation may
be considered a frequency selective amplification of fluctua-
tions. In the case of electrical oscillators, the fluctuations stem
from, e.g., thermal motion of the electrons, and in the case of
lasers from spontaneous emission of light. Since we consider

only positive frequencies, we may focus on frequencies near
. With the resonance approximation

(8)

we find

(9)

This expression represents a Lorentz function corresponding
to an exponential decay of the autocorrelation function in
the time domain. The Lorentzian linewidth (half-width at
half-maximum) follows from (9) as

(10)

and the spectrum may be written as

(11)

with the abbreviation

(12)

for a Lorentz function of area unity. The linewidth (full-width
at half-maximum) of the passive resonator ( ) is

(13)

and the total power (in watts) delivered to the load is
given by

(14)

From (11) we find

(15)

or, after rearranging,

(16)

There is a complete analogy between (16) and the expression
for the semiconductor laser linewidth (see, e.g., (47) in [5]).
The characteristic energy in (16) corresponds to the
photon energy, corresponds to the laser output power,
and corresponds to the inversion factor
representing the ratio between spontaneous emission rate (the
origin of noise) and the optical gain rate. The analogy between
electrical quantities used in this model and optical quantities
used in laser theory is illustrated in Table I (see also next
section).

The normalized power spectral density can be expressed by
the linewidth as

(17)
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TABLE I
ANALOGY BETWEEN ELECTRICAL AND OPTICAL QUANTITIES

where, on the right-hand side, a frequency offset
was assumed. Therefore, the linewidth, although hard to
measure directly, represents a good measure for the relative
phase noise of the oscillator. As for lasers, the Lorentzian
linewidth given by (16) is inversely proportional to the power,
reflecting the tradeoff between relative phase noise and power
consumption.

The question arises how these results can be general-
ized when a more sophisticated expression of the feedback
impedance is used. Equation (9) may be reexpressed by
defining the noise shaping function by

(18)

where is the transfer function of the system. Should
not be parabolically shaped, it can be expanded to

second order with respect toaround the oscillation frequency
. Such an expansion is justified if the power spectral density

of the freely running oscillator drops with approximately6
dB per octave, which is often the case. This expansion results
in a more general definition of the quality factor

(19)

In this case, (9)–(17) remain approximately valid.

IV. THE FLUCTUATING CONTROL VOLTAGE CASE

Now we consider the more general case of a fluctuating
control voltage , with denoting
the expectation value and the fluctuations around
this value. These fluctuations give rise to fluctuations of the
oscillation frequency . Let the steady-
state probability density of be . Weighting the
result of the previous section with , we obtain

(20)

Equation (20) represents a convolution of the Lorentzian with
the probability density , describing additional line
broadening due to low-frequency fluctuations of the control

voltage. To obtain a reasonable probability density ,
some assumptions about the stochastic process or

need to made. In the following, we will investigate
the influence of phase diffusion on the power spectrum by
modeling the time-dependence of the oscillation frequency
stochastically. We start with the Langevin equation

(21)

where is the damping of the process which drives
exponentially toward zero, and is a white noise force
with the autocorrelation function

(22)

Equations (22) and (23) describe an Ornstein–Uhlenbeck
process [6] well known in connection with the motion of
a Brownian particle. Its steady-state solution is unique in
that it is the only stationary stochastic process that is both
Gaussian and Markovian. The noise in semiconductors
is not a Gaussian process and, therefore, difficult to model.
However, the investigation of the Ornstein–Uhlenbeck process
is useful as an approximation, since it gives insight into the
interplay between the high-frequency noise in the feedback
loop and the low-frequency noise of resulting in total
oscillator line broadening. The probability density of the
Ornstein–Uhlenbeck process is a Maxwell distribution. This
model corresponds to the inhomogeneous line broadening
in gas lasers due to the Doppler effect, since the velocity
distribution of the lasing molecules is also Maxwellian (see
also Table I). The steady-state probability density of
is given by

(23)

with the abbreviation for a Gaussian distribution of unity area

(24)

with the rms value given by

(25)
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Now we will replace by the rms value of the control
voltage fluctuations. For this purpose, we assume a linear
relationship between the fluctuation and the fluctuation

according to

(26)

with the sensitivity defined by . Equation
(26) implies that the frequency fluctuations instantaneously
follow the voltage fluctuations, that is, that the delay time in
the control loop is small compared to the characteristic time
of the low-frequency fluctuations of . The corresponding
root-mean-square values are then connected with each other by

(27)

The root-mean-square value is a measure for the additional
line broadening due to the fluctuations. It is a product of
the sensitivity and the square root of the integrated noise
spectral density of

(28)

Replacing the variance of by that of according
to (27), we obtain from (23)

(29)

Obviously, there is a trade off between tunability (high )
and low phase noise (low ). The Gaussian in (29) needs
to be convolved with the Lorentzian according to (20). This
gives the final result

(30)

with the abbreviation

(31)

The convolution integral is called a Voigt line profile and
is of unity area. We remark that the derivation of (30) did not
require the assumption of an Ornstein–Uhlenbeck process for

. The only required assumption is that the probability
density of the low-frequency fluctuations is Gaussian,
which may be a good approximation, even for -noise.

Unfortunately, the integral in (31) cannot be performed
analytically. A convenient method to calculate the integral is to
transform it analytically into the time domain and numerically
back into the frequency domain. We obtain then a formula for
synthesizing the Voigt line profile

(32)
To analyze experimental spectra, several approximations of
the Voigt function and its partial derivatives with respect to
and are available [7], because the Voigt function plays an
important role in optical spectroscopy. Using a least squares
fit algorithm for and , experimental data can be fitted.
A curve fitting procedure based on evolution strategies is
described in [8].

Fig. 2. Normalized power spectral density for the case of vanishingVC

fluctuations (dashed), strongVC fluctuations (dot-dashed), and mediumVC
fluctuations (solid).

Now we will discuss two limiting cases. First, we consider
the case of strong fluctuations defined by the relation

(33)

with the Lorentzian linewidth given by (16). In this case,
the Lorentzian in (31) may be replaced with a-function
and we find

(34)

We conclude from (34) that, as for Doppler broadened laser
lines, the low-frequency fluctuations are transformed to the
vicinity of the oscillation frequency. We point out that the
resulting lineshape is determined by the Gaussianprobability
density of these fluctuations and not by the power spectral
density which is a Lorentzian for the Ornstein–Uhlenbeck
process.

Second, we discuss the opposite limit of weak -
fluctuations defined by

(35)

The Gaussian in (31) may then be replaced with a-
function, and we find

(36)

as obtained in the previous section. Figs. 2 and 3 show the
lineshapes for these two limiting cases and for a case of
medium fluctuations, where and are of the same
order. In the last case (solid curve), the lineshape resembles a
Gaussian for small frequency offsets , and a Lorentzian
for large offsets. In other words, if in a semi-logarithmic
plot as in Fig. 2 the spectrum is parabolically shaped near
the maximum, low-frequency noise contribution of the
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Fig. 3. As Fig. 2, with logarithmic frequency axis.

fluctuations are significant. Such a behavior is observed in
the VCO spectrum in [1]. For frequency offsets larger than 8
kHz, the spectrum shows a nearly perfect Lorentzian shape,
but at low offsets it is much broader. However, an accurate
comparison to our model would require the Voigt function
to be convolved with the bandpass filter function of
the spectrum analyzer. A corresponding fit to a measured
power spectrum would allow the power spectral density to
be decomposed into a Lorentzian and a Gaussian contribution,
which is, however, beyond the scope of this paper.

V. APPLICATION OF THE CONCEPT TOCIRCUIT DESIGN

Up until now, we have considered a very simple oscillator
model, since it allows analytical treatment of the phase noise.
A detailed investigation of realistic oscillators is beyond the
scope of this paper. However, we will explain in the following
how the concept may be applied to more sophisticated circuits
by combining simulation and measurement with the equations
derived above.

Let us assume that the oscillator has been modeled for the
case of fixed control voltage. Here the term “control voltage”
means either an actual control voltage or a fluctuating supply
or substrate voltage. In the absence of flicker noise in the
feedback loop, the lineshape will resemble a Lorentzian given
by (36). In consideration of the proper normalization, the phase
noise with respect to the carrier, also called single-sideband
phase noise, is given by

(37)

where the phase diffusivity depends on the circuit.
The probability density function of the control voltage

is assumed to be a Gaussian and is, therefore, completely
described by the rms value . If the sensitivity is
known from simulation or measurement, the rms value of

the oscillation frequency can be calculated from (27). The
corresponding probability density (24) needs to be convolved
with the phase noise spectrum given by (37) as it was done
in (31) to obtain the phase noise in consideration of control
voltage fluctuations.

VI. CONCLUSIONS

We have presented a simple analytical model for the output
power spectrum of a voltage-controlled oscillator. The line
broadening is due to both the high-frequency noise in the
feedback loop and the low-frequency noise of the frequency
control voltage. We have stressed the analogy between optical
oscillators (lasers) and electrical oscillators allowing one to
take advantage of the knowledge in the field of optical spec-
troscopy. The Lorentzian part of the power spectral density
has been expressed in terms of circuit parameters and the
consumed power. There is also an additional line broadening
due to the noise of the frequency control voltage, which
affects the power spectral density, especially for not-too-large
frequency offsets. Although we have confined ourselves to a
simple oscillator, the methods derived here may be applied
to analytical phase noise calculations for more sophisticated
circuits including supply and substrate noise.
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