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Abstract. A very large electron sheet density and a relatively long momentum relaxation time 

of the two-dimensional electron gas in III-N heterostructures makes this materials system to be 

very attractive for plasmonic electronics applications. 

1.  Introduction  

Terahertz (THz) plasmonic devices [1],[2], are getting close to being commercialized. Efficient room 

temperature detectors implemented in AlGaAs/GaAs, AlGaN/GaN heterostructures [3] and Si CMOS 

terahertz cameras [4] have been reported. Graphene transistors exhibited overdamped plasmonic 

response, and graphene plasmonic detectors are expected to achieve superior performance. While most 

of the device efforts focused on THz plasmonic detectors, terahertz radiation emitted by short channel 

InGaAs [5] and AlGaN/GaN [6],[7] devices at cryogenic and room temperatures has been reported. 

Using “plasmonic crystals” [8], which are one-dimensional [9], two-dimensional or three-dimensional 

plasmonic arrays [10], could boost performance by orders of magnitude. The vast majority of the 

results deal with overdamped response related to nonlinearities in the device response. But the 

resonant plasmonic detection has also been reported [11],[12]. Recent results on extremely high sheet 

two-dimensional electron gas (2DEG) densities in AlInN/GaN structures [13], predictions of 

extremely high overshoot electron velocities in InN [14], and resonant terahertz response in 

AlGaN/GaN grating gate structures [15],[16] make this materials system very attractive for further 

development of plasma wave electronic devices. In this paper, we discuss how transport properties of 

short-channel III-N plasmonic devices and their performance. 

2.  Collision dominated and ballistic electron transport in III-N 2DEG 

Figure 1 shows the measured [17] and calculated temperature dependence of 2DEG mobility,  , in 

AlGaN/GaN heterostructure. (The mobility calculations accounted for optical phonon, acoustic 

phonon, and ionized impurity scattering.) Also shown is the ballistic mobility [18],[19] (i.e. the 

electron mobility limited by the device contacts given (for the degenerate 2DEG) by [20] 

     
 

 

  

    
 

Here   is the electronic charge,   is the gate length,    is the electron effective mass,    
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is the Fermi velocity, and ns is the electron sheet density. As seen, the overall effective mobility 
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at temperatures below 250 K. 

 
Figure 1. Measured and calculated temperature 

dependence of two-dimensional electrons in 

AlGaN/GaN heterostructure and ballistic mobility 

versus gate length. 

Figure 2 shows the electron plasma   √
     

   
 and Fermi velocities as functions of the 2DEG 

sheet density in GaN. 

 
Figure 2. Plasma and Fermi velocities versus 2DEG sheet density. 

As was shown in [21], the ratio of the decrement related to the Landau damping to the real part of the 

plasma frequency is given by 
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As seen, the plasma wave velocity is much larger than the Fermi velocity in the III-N 2DEG Fermi 

velocity and, therefore, the Landau damping is relatively small. 

Figure 3 shows the fundamental plasma frequency 

  
 

  
 

for III-N 2DEG FETs for short circuit boundary condition at the source side of the gated channel and 

open circuit condition at the drain side. 

 

 

Figure 3. Fundamental plasma frequency versus gate length for 

different 2DEG densities. 

 

Figure 4 shows the plasma wave quality factor calculated using the momentum relaxation time 

extracted from the measured mobility data shown in Figure 1 for frequencies of 1 THz and 5 THz.  

 

 

Figure 4. Plasma wave quality factor versus temperature 

for 1 THz and 5 THz plasma frequencies for III-N FETs. 

 

These results show that the resonant detection and THz emission are possible at room temperature 

using short channel devices with the gate length below 50 to 70 nm and operating at frequencies of the 

order of 5 THz or above. Longer devices are expected to operate as broadband THz plasmonic 

detectors or in the intermediate regime with the quality factor on the order of 1. 
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In the broadband detection regime, THz radiation couples to the device at the gate edges and 

excites an overdamped plasma mode that propagates into the channel along the distributive RC 

transmission line formed by the channel resistance and the gate-to-channel capacitance (see Figure 5). 

 

 

Figure 5. Lossy transmission line representation of FET 

channel for overdamped plasma wave propagation. 

 

The characteristic scale of the decay depends on the field effect mobility   and signal frequency   

(see figure 6). 

   √
    
 

 

Here     is the gate voltage swing. 

 

 

Figure 6. Plasmonic decay. Top, middle, and bottom curves are 

for f =0.2 THz, 0.5 THz, and 5 THz for GaN 2DEG. 

 

Kachorovski et al. [22] calculated the conversion efficiency   of a GaN-based FET defined as the ratio 

of the power dissipated by radiation-induced dc current to the THz dissipated power. And predicted 

the maximal value of the conversion efficiency on the order of 10%. 

3.  Experimental data 

El Fatimy et al. reported on both resonant and non-resonant plasmonic detection GaN HEMTs with 

150 nm gates (see figure 7) [23]. They reported on the minimum Noise Equivalent power of 5x10
-9

 

W/Hz 
0.5

. 

Taginawa et al. [3] achieved the responsivity of 1100 V/W using a GaN plasmonic detectors 

matched to 1 THz radiation.  

Muravjov et al. [24] observed strong plasmon resonances in the terahertz transmission spectra in 

the range between 1 and 5 THz of large-area slit-grating-gate AlGaN/GaN-based FET structures at 

temperatures from 10 to 170 K. The resonance frequencies corresponded to the excitation of plasmons 
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with wave vectors equal to the reciprocal lattice vectors of the metal grating, which coupled plasmons 

and incident terahertz radiation. The resonances tunable by the applied gate voltage were observed up 

to 170 K. The results were in a good agreement with the theoretical predictions [25]. 

 

 

Figure 7. Plasmonic response 

of GaN/AlGaN -based FET to 

THz radiation. Bars show the 

position and width of resonant 

maxima. Line shows the 

calculated dependence of 

fundamental plasma frequency 

versus gate voltage (From [22]). 

 

4.  Conclusion 

Exceptional transport properties of III-N 2DEG make GaN-based FETs uniquely suitable for 

applications in advanced plasmonic electronic devices for detection, mixing, and generation of THz 

radiation.  
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