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A new approach of using distributed transmissiore lanalogy for solving transport
equations for ballistic nanostructures is appl@dsblving the three dimensional problem
of the electron transport in gated ballistic nanadtires with periodically changing
width. The structures with the varying width alldar modulation of the electron drift
velocity while keeping the plasma velocity constafe predict that in such structures
biased by a constant current, a periodic modulatiotne electron drift velocity due the
varying width results in the instability of the ptaa waves if the electron drift velocity to
plasma wave velocity ratio changes from below tovabunity. The physics of such
instability is similar to that of the sonic boomutpin the periodically modulated
structures, this analog of the sonic boom is reggkabany times leading to a larger
increment of the instability. The constant plasnedoeity in the sections of different
width leads to the resonant excitation of the uristalasma modes with the varying bias
current. This effect (that we refer to as the sypasmonic boom condition) results in a
strong enhancement of the instability. The predigtestability involves the oscillating
dipole charge carried by the plasma waves. Theras can be efficiently coupled to
the terahertz (THz) electromagnetic radiation du¢he periodic geometry of the gated
structure. Our estimates show that the analyzedbiigy should enable powerful tunable
terahertz electronic sources.
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[. INTRODUCTION

The plasma wave propagation in the two-dimensieledtron gas is strongly affected by
the electron drift. At the values of the drift veity smaller that the plasma velocity, the
Doppler effect leads to the plasma wave instabjlit]. When the drift velocity reaches
the plasma velocity, the electron flow is “chokddading to the current saturation [3].
The transition from the sub-plasmonic drift velgdid the super-plasmonic drift velocity
should be accompanied by the “plasmonic boom” simd the sonic boom. This analogy
is due to the hydrodynamic equations describingothema wave of the small amplitude
being identical to those describing the sound wavls plasmonic boom effect can be
used for exciting plasmons with rapidly increasiagiplitude in the periodically
modulated two-dimensional electron gas (2DEG) [43tjce the plasma frequency in the
periodically modulated 2DEG structures is typicaltlythe THz range, this instability
should lead to the emission of the THz radiatiombdéing a new type of the THz
electronic sources. As shown in this paper, th&abbty is resonantly enhanced if the
plasma velocity is the same in all device regions (efer to this condition as a super
plasmonic boom.)

Developing an efficient electronic THz source e ®f the key challenges to be
met for closing the famous THz gap [6]. The exigtalectronic sources use Gunn diodes
with frequency multiplication by Schottky dioded [@hd InGaAs based High Electron
Mobility Transistor Integrated Circuits [8]. Thesad other similar electronic sources
suffer from low power, low efficiency and high cobksing the plasma wave instabilities
in ballistic Field Effect Transistors (FETs) propdsin [1,9] has a promise of developing
more efficient THz sources. However, the observett Tadiation [10-12] has mostly
been broadband until recently, when the proposeaysirof the ballistic FETs [13,14]
have been implemented and improved to include Asgimm Digital Grated Gate
structures [15]. Nevertheless, the goal of reacHin(mW at 1 THz using plasmonic
sources has not been reached yet.

A recent proposal was to use a grating gate pergiclicture with two sections in
each period, such that the electron velocity ha&suhlue between the values of the
plasma wave velocity in these sections [4,5]. Iehsa structure, the plasma waves
behave similar to the sound waves emitted duriegstimic boom, when a jet crosses the
sound barrier, except that such transition occuamyntimes over. In Refs [4,5], the
multi-gated structure with two sections having eliéint electron densities was proposed
to modulate the plasma velocity.

In this paper, we develop a theory of the ‘plasimdmom” instability in a
periodically modulated 2D electron channel. We psgpand analyze a more general
structure, where either the periodic modulationtted electron velocity or the plasma
frequency or both achieve the repeated “plasmoonti conditions. Our approach
allows us to analyze the new structures with aggizimodulation of the device width. In
these structures biased by a constant current lgwtren drift velocity periodically
changes but the plasma velocity remains constdrmg. cbnstant plasma velocity in the
sections of the different width leads to the resprexcitation of the unstable plasma
modes when the bias current is tuned thus stroaghancing the instability (the super
plasmonic boom). Our estimates show that the agdlyinstability should enable



powerful tunable terahertz electronic sources. pitoposed structure might be the most
practical implementation of a periodic THz sourses Figure 1.

The structure shown in Figure 1 consists of theradting 2D strips with two
different widthsiW, < W, and lengthd.,;, andL,. The metal gate positioned above the 2D
channel control the electron density in the stapd allows tuning of the plasma wave
velocity. We also assume that a dc current flowtsveen the source and the drain. This
structure represents a periodic plasmonic mediummifg a 1D plasmonic crystal
[4,5,16-22]. In this paper, we demonstrate thatstamt electron drift qualitatively
changes the plasmonic crystal spectrum and mat riesthe instability of the drifting
plasma modes different from the plasma instabiétyimes described in [1] and [23].

II. BASIC EQUATIONS
We will describe plasma oscillations in the 2D &l@c gas in the presence of a dc
electric current within the hydrodynamic model.this model, the local electron density

n(x,t) and velocityv(x, t) obey the Euler and continuity equations
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where we assumed that the plasma wave in the 2&r lay= 0) propagates in the-
direction between the source and the drain. ez = 0, t) is the electric potential in
the 2D plane;-e andm™ are the electron charge and effective mass, réspgc We
neglect collisional damping in the Euler equati@swaning the ballistic transport. Egs.
(1) could be linearized for small fluctuations dfet electron density and velocity:
n=ny+4dn,v=1v,+ v, wheren, is the equilibrium electron density in the 2D
channel ana, is the electron drift velocity due to dc sourceidrelectric current. We
also assume that the system fluctuations of thetrele densitysn and electric potential
d¢ in the gated 2D electron channel are connecteeeds = Cép, whereC = ¢/4nd is

the capacitance per unit area between the 2D chandehe metal gate separated by the
distanced, ¢ is the dielectric constant of the barrier layetwsen the metal and the 2D
channel. This assumption is justifieddifs much less than the plasmon wavelength. The
solution of Egs. (1) (linearized with respecttg dv « exp(—igx + iwt)) is
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wherel,, = W§j, = —eW (v,6n, + nydv,) is the total current in the 2D channel of
width W andV,, = 6¢, (x) is the voltage distribution in the plasma wavetlibimken at
frequencyw ). The plasmonic wave vectags, are determined apg , = a)/(v0 + vp)



wherev, = \/e?n,/m*C is velocity of the gated acoustic 2D plasmon ia &bsence of
the drift [24]. Drifting plasmon in the gated chahmlso has linear dispersion but with
Doppler shifted wave velocity due to constant etecdrift [1]. Constantg, , in Egs. (2)
are determined by the boundary conditions.

The total power carried by the drifting plasma wavcludes the electromagnetic
power and the kinetic power due to the drift of éhectrons oscillating in the wave. The
average complex powe, (x) carried by the drifting plasmon in thedirection can be
written as

m*yg
2e
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where S, = —(c/8m)E, By, is the x-component of the complex Poynting vector
averaged over the THz period. The first term in B).describes the electromagnetic
power. The second one represents the kinetic paneéwranishes at, = 0. The electric
(E;) and magneticH, ,) fields in the plasma wave as well as the kinptwer can be
expressed in terms of the voltayjg and the current, from Eqgs. (2). After the
integration Eq. (3) yields
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At v, = 0 the standard expressigh= VI*/2 for the power flow in the plasmonic
waveguide in the limit of the strong gate screenisigecovered. The electron drift
effectively modifies the voltage distribution inetlplasmonic waveguide by adding the
so-called kinetic voltagerm*v,dv, first introduced for description of the electdo@am
waves in tubes [25]. Expression for the power floviEq. (4) reduces to its standard form
after defining an effective voltage

vZ—v? v,
Vafff = pv_lzjovw + Wovzz,l“’ . (5)

According to Egs. (2) and (5), the valuesll,ﬁff andl, at the opposite boundaries of the
2D electron strip of length (x = 0, ¢) are connected via the transfer mafrix
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The dispersion relation for the drifting 1D plasnwrrrystal formed in the
structure of Figure 1 depends on the boundary tiondi between the strips 1 and 2 in



the crystal elementary cell. In the limit of a sigogate screening, the 2D channel in each
strip can be considered as a plasmonic transmisis®TL) supporting 2D TEM plasma
waves [20,21]. In the absence of drift, the continof the current and voltage at the
boundary between the strips represents the stafidatsbundary conditions providing
the continuity of the power flow through the bounydaA finite drift breaks the
reciprocity of the TL due to the different wave a@ties of the plasmons propagating in
the opposite directions. To preserve the continoityhe power flow, we assume the

continuity of the current, together with the continuity of the effective \&gt—:‘ijf

defined in Eq. (5). For these boundary conditiothg values of, andV(jff at the
opposite sides of the crystal elementary cell amenected by the transfer matfix,
wheret;, i = 1,2 are the transfer matrices defined in Eq. (7) fer $trips 1 and 2. In the
translationally invariant periodic plasmonic medjuitme dispersion equation for the 1D
drifting plasmonic crystal can be found using tHedB theorem and solving the resulting
1D Kronig-Penney problem [26]

cos(kL + wT) = cos wT; cos wT, — %(y + %) sin wT; sin wT, , (8)
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Herey = L =1L, +L, is the crystal lattice constark,€ [-n/L, /L] is the

Wzvpzdl'
plasmon Bloch wave vector, and indices 1 and 2 tef¢he strips 1 and 2, respectively.
Parameter$ andT;, i = 1,2 are defined as [5]
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Eq. (8) generalizes the dispersion equation fod@alrifting plasmonic crystal found in
Ref. [5] to the case of periodically changing stwjdth W and the gate-to-channel

distanced. Parametey < 1 in Eq. (8) describes the modulation depth of tlasmponic
medium.

[ll. RESULTS AND DISCUSSION

We will now consider Eq. (8) in the limit of strormgodulation,y « 1, and look for
solution in the form of the power asymptotic seties }.7"_, w,y?. Substituting this
expansion into Eq. (8) and combining terms of thme order, we find for the first two
terms of the asymptotic series
; ; 2|(-1)™*1 cos kL+w(i2nT +cosw(i2nT~
W) = wg + | T(i Tl T3 onily 1 0y
(@ _7mm
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Frequencie&)éf,)n in Eq. (10) are the frequencies of the driftinggshons confined in the

cavity of lengthL; with the symmetric boundary conditions. In Fig@&ewe plot the
frequencies of the first three quantized plasméels in the strips 1 and 2 as a function



of the electron drift velocity in the narrow stlipv,;. In this Figure, we assume that both
strips 1 and 2 have the same parameters excethiegfovidth so thay = W, /W, < 1 and
the electron drift velocity in the wide strip 2, = yvy;.

It follows from Eqg. (10) that the quantized plasnwomnergy levels in the
identical strips (1 or 2) are weakly coupled andadlened into the narrow plasmonic
bands a¥ « 1. In this limit, strips 1 and 2 form two indepenti@lasmonic sublattices.
The plasmon frequencies in the bands in Eq. (1®)eal. Hence, no instability occurs at
any value of the electron drift velocity.

Points Whereog_l% = w(g?, m,p = 0,1,2, ... present special interest. In the absence
of a dc drift, the band gaps in the plasmonic elyspectrum vanish in these points, and
plasma wave propagates through the entire crystad iresonant manner [21]. The

dispersion law for the drifting plasmon in thesangparency points cannot be found from
Eq. (10) because all terms in the asymptotic sersesl in this equation diverge, and an

alternative asymptotic expansion is developed below

Let wél% = “’(5,213 = womp- Aty K 1 solution of Eq. (8) has the form,,, =
womp + Aw WhereAw — 0 at y - 0. We expand Eq. (8) into quadratic polynomial
with respect toAw and look forAw in the form of an asymptotic seridso =
¥ o Y%, 8,41 > 8, . Coefficientsa;, ands, can be found by the standard Newton
diagram method used for finding asymptotic expamsibthe polynomial roots [27]. Our
calculations yield
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It follows from Eqg. (11) that af;T, > 0, the resonant coupling of the quantized
plasmonic levels in the adjacent non-identicalpstri and 2 splits each unperturbed
degenerate plasmonic level into the two plasmoaiak described by the second term in
Eq. (11). f T4 T, < 0, the degenerate plasmonic level broadens into maeow
plasmonic band described by the third term in E).(The second term in this equation
becomes purely imaginary and corresponds to eitimstable or decaying plasmon
modes. The instability increment depends on theclBlwave vector. From Eq. (9) it
follows that the instability occurs when, > v, (Vo1 < vp1) butvy, < vy, (v, >
v,2). These inequalities constitute the necessaryitiond for the repeated “sonic boom”

with the dc current flowing in the structure. Ingiie 2, the stable and unstable
transparency points are marked by the open anédloscles, respectively. One can also
show that atwg,, # wg, but |wis, — w(()zgl -0 the interaction between nearly
degenerate plasmonic levels in the strips 1 andsRlts in either two split plasmonic
bands with real eigenvalues or one band with ufestahd decaying branches dependent
on the value ok in the Brillouin zone.

These analytical results are confirmed by thectlilmmerical solution of Eq. (8).
For the structure shown in Fig. 1, we choogg = v,, = v, andd; = d, so that

14
y =W, /W, <1 and vy, = yvy; . We also assume thdt; =L, =L/2 and use



dimensionless units for the complex plasma frequefe + iw')/wy, where w, =

2v, /L. The dimensionless drift velocity in the narrowyst is defined ag, = vy, /v, .
Figs. 3-6 show the results of the numerical sotutf Eq. (8) fory = 0.1. Fig. 3

shows the drifting plasmonic crystal spectrumifge= 0.43. At this value of the drift

velocity, w(l) * w(z) at anym,p = 1, and the low energy spectrum consists of the two

sets of the plasmonic bandé,l) and w(z) =1,2,... formed due to the resonant

coupling of the plasmon energy Ievelém andw(z) in the strips 1 and 2, respectively,

as described by Eg. (10). One additional low ensqjytlon appears in the transparency

pointa)élo) = a)(()zo) This solution can be interpreted as a latticeuatto plasmon similar

to the acoustic phonons in the atomic crystaldaténd corresponds to thzéﬁ) modes in
Eq. (11). Since at given value of the drift velpdi{T, > 0, there is no imaginary part in

the frequenues)( ),
Aty = 0.1, the instability occurs in the range bk ¥, < 10. Fig. 4 shows the

numerically found plasmonic spectrum gy = 1.12 whenwéﬂ}p = wézg ,p=012,...

The real part of the plasma frequencie$/w,, is plotted in Fig. 4a. The plasmonic
spectrum consists of the stable bands with puesy frequencies formed by the coupled

strips 1 ,a) , and unstable bandsump, in the transparency points Whewél) = w(()zg

Fig. 4a shows the two of these unstable bands.ifgtability increment|w’|/wy, in
these bands depends on the plasmonic Bloch wauwervas shown in Fig. 4b. These
results correlate very well with asymptotic analgtiformulas in Egs. (10) and (11).

All the quantized plasmonic levels in strips 1 ghdare perfectly matched if
|T;| = |T,| , see Egs. (9) and (10). This last equation remtssthe super resonance

condition when the plasmonic crystal becomes utstabany plasma frequena;fni),
provided thaf; T, < 0 (the super plasmonic boom). For the structureidensd here, it

happens af, = \/2/(1 +y?) = 1.41. In Fig. 2, the super resonance condition is narke
by the dashed vertical lines with red arrow. Plasfrequencies and instability
increments for this totally unstable plasmonic taysare shown in Figs. 5a and 5b,
respectively.

The results presented in Figs. 4 and 5 indicadé tte instability has a resonant
character and occurs every time when there is &geplasmonic level matching
between different strips in the transparency poihtsthis case, the plasma modes are
unstable at any value of the plasmonic Bloch waeetor k. However if the level
mismatch is small the instability does not compyet@nish but occurs at some intervals
of k in the Brillouin zone. In Fig. 6, we plotted théagmon dispersion curves for

Do = 1.71 when wélg = wézz)p p=01.2,... Two unstable modes's andw® are

shown in Fig. 6a with the corresponding instabilitgrements shown in Fig. 6b. The
unstable mod@(+) is the result of the resonant coupling of the iplasic Ievelsw(l) and

w(()zz) When the drift velocity, changes, these two levels shift differently andodele.

The inset shows the dispersion curves for this matlé, = 1.65. The instability
disappears at some interval kof where instead of one unstable band two split stabl
bands emerge. When level mismatch increases ti@nrefstability expands and finally



the unstable banﬂg) transforms into two stable bandél) andwéz) described by Eq.
(10).

One should also point out that the low frequencguatic modew(%) in the
plasmonic crystal lattice remains unstable at amjues of ¥, within the instability
window 1 < 7, < 1/y. This result follows from the asymptotic expansianEq. (11)
and is confirmed by the numerical simulations shawhigs. 3-6.

As seen from Figs. 4-6, the predicted instabilitrement is of the order dfw,,
wherew,is the plasma frequency. This corresponds to the geefficientg~w,/7,,
wheret, = dw/dk is the plasma group velocity in the plasmonicstalyenergy band,
#,~yvy,. For the plasma frequency of 3 THa,-2x10° s*) and®,~10°m/s, the gain
g~2x10 m™. Demandingg > 1 for the efficient generation, we need structuréh the
length on the order of one micron. For a ballistiwmicture, the contact resistance on the
order of 0.50mm limits the device resistance. Assuming a typiadiation resistance of
300 Q and the device width of m we estimate the current carrying capability om th
order oflmax~ 30 mA for the electron velocity ~2x1fh/s and the 2D electron density of
10" cm. Assuming the current swing of OL5., We obtain the power of 80 mW with
efficiency of approximately 20%.

IV. CONCLUSIONS

The results of the analytical theory and numergiatulations show that the plasma
waves in alD plasmonic crystal become unstable wheelectron drift velocity changes
from the value smaller than the plasma velocitth® value larger than plasma velocity.
This can be achieved by changing either the delbeity or the plasma wave velocity in
the strips constituting the plasmonic crystal. Talitative physics of the instability is
similar to the physics of the sonic boom, whichwscwhen a jet airliner crosses the
sound barrier. The difference is that such “plasim boom” is repeated many times in
the periodic plasmonic structure leading to a mutionger instability. Further
enhancement of the instability occurs due to treommant excitation of the unstable
plasma modes including the super resonance condifeen all plasma modes become
unstable (the super plasmonic boom). Another adg@nf this approach is that the
plasmonic crystal can efficiently couple with THEa&romagnetic radiation. In our
analysis, we neglected the electron collisions witpurities and lattice vibrations. The
modern silicon VLSI fabrication techniques reachdeéature size of 10 nm in 2015 [28],
which is smaller than the mean free path in Soatrr temperature (~ 30nm). This makes
the ballistic plasmonic crystal analysis to be igtigl as the first approximation at room
temperature and to be a very good approximatiamyagenic temperatures. High values
of the electron mobility in graphene (up to 200,@0/V-s at room temperature [29])
make this material a good candidate for the THzmlznic crystal application [30].
Therefore, we believe that the THz generation meisha proposed in this paper should
enable a new generation of efficient and compadc 3éurces.
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Figure captions
Figure 1. Schematic diagram of the 2D transistarcstire with modulated width.

Figure 2. First three quantized plasmonic levelghi& non-interacting plasma cavities

formed in strips 1(()(()_113 , red lines) and strips 20&2731 , blue lines) as a function of the
electron drift velocity in strips 1. Open (solid)rates indicate stable (unstable)
transparency points. Vertical dashed lines markig red arrow correspond to the super

resonance condition.

Figure 3. Energy band spectrum of the drifting plasic crystal when the electron drift
velocity in both strips 1 and 2 is less than trespia wave velocityz,,, vy, < v,. Here
Vo1 = 0.43vy, vy, = 0.1vy;. Two lowest stable plasmonic bands formed dubéo t

resonant coupling of the quantized plasmonic lewetgrips 1 (u,(,f)) and strips 26(),(,?)

are shown. Stable bandéﬁ) correspond to the lattice acoustic plasmon asribestin
the text.

Figure 4. Energy band spectrum of the drifting plasic crystal when the electron drift
velocity is within the instability ranger,, < v, < vy,. Herevy; = 1.12v,, vy, =

0.1vo;. () Plasmonic band frequencies in the stabledgsf., solid black lines) and

unstable bandsw(ff), red circles and blue squares); (b) Instabiligréments in the
unstable plasmonic bands

Figure 5. Totally unstable energy band spectruth@drifting plasmonic crystal at
Vo1 = 1.41v,, vy, = 0.1v,; corresponding to the resonant coupling of all gzad
plasmonic levels in strips 1 and 2. The first fonstable bands are shown.

(a) Plasmonic band frequencies; (b) Instabilityeémeents.

Figure 6. Energy band spectrum of the drifting piaesic crystal at the electron drift
velocity within the instability rangerzy, = 1.71v,, vy, = 0.1vy,. (@) Plasmonic band
frequencies in the stable bands (solid black lie@s) unstable bands (red circles and blue

squares); (b) Instability increments in the unstdidnds. Inset: theg) unstable band at

V91 = 1.651, showing the evolution of the unstable band with ¢hanging drift velocity
as described in the text.
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