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MerHOD OF DETECTION

The method of exciting the array dis-
cussed previously raises the problem of
separating the incident wave from the
scattered wave because only the scattered
wave (reradiation from array elements) is
of interest. In our experiment we used a
plane wave to excite the array whose
polarization is such that the electric field
is spatially oriented at 45 degrees with
respect to the dipoles on the array. The
reradiated electric field is detected by
the receiving antenna which is rotated
such that its polarization is at 90 degrees
spatially with respect to that of the trans-
mitted wave. This will allow the scat-
tered wave to be received while the inci-
dent wave is rejected. This method gives
approximately 10 dB decoupling between
the incident signal power and the received
one (Fig. 4).

The method is further improved by
using a microwave bridge circuit. A
signal is derived from the plane-wave
source in the absence of the array to can-
cel any signal received by the receiving
antenna. Then the array is placed in
position to measure the scattered field.
With this arrangement the signal re-

ceived directly from the transmitter can
be brought down to better than —13 dB
in the region around the main beam of the
transmitter and beyond —20 dB in other
regions.

A block diagram of this experimental
setup is shown in Fig. 2, and a typical
experimental radiation pattern compared
with the theoretical pattern at designed
frequency is shown in Fig. 3.

CoNCLUSION

We have investigated the radiation
pattern of a spherical array by means of
the scattered plane resulting from a wave
propagating along the polar axis of the
sphere. The technique of detecting the
scattered field from the sum of the scat-
tered field and incident field is discussed,
and some experimental results are shown.
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Resonant Quadrafilar Helix

Abstract—Theradiation of the resonant,
fractional-turn, quadrafilar helix is shown to
be cardioid shaped and circularly polarized
regardless of axial length and diameter.
Measured and calculated data relate the
radiation pattern characteristics and geo-
metrical parameters.

INTRODUCTION

An earlier paper [1] has shown that
the resonant (element length =1/2), 1/2-
turn, antiphase-fed, bifilar helix radiates a
sine-shaped, circularly polarized radiation
pattern when the diameter=0.18\ and
the axial length =0.27); and that two such
bifilar helices, concentric with orthogonal
radials (a quadrafilar helix), radiate a
cardioid-shaped, circularly polarized pat-
tern when fed in phase quadrature.

New experimental data indicates that
resonant 1/4-turn, 1/2-turn, and l-turn
quadrafilar helices radiate a cardioid-
shaped, circularly polarized pattern for all
axial lengths and diameters. Pattern
shape and axial ratio are degraded for
very large or very small axial length/
diameter and for helices with more than 1
turn. Graphs of the measured beamwidth,
axial ratio, and front-to-back ratio are
included, as shown in Fig. 3.

Integral formulas for the radiation of
the multielement helix have been derived.
The radiation patterns of several helices
have been computed by numerical integra-
tion and found to agree with the measured
data.

ANALYSIS

The variables and parameters used are
defined in Fig. 1. The fields of the radials
and the fields of the helical portions will
be evaluated independently and then
summed. The assumed current distribu-
tion is sinusoidal with maxima at the feed
and the distal end. Utilizing the usual
approximations [2], the ¢ component of
the total field of element 1 is
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Field of the Helical Poriions

Let « be the integration variable.
From Fig. 1
da
dl = %=
cos 8
and the general formula is
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For each element of the helix the current
magnitudes are

1s(e) = Iqcos (kro) cos ilv cos 8.
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For elements 1 and 2:

1(p,0) = ig(a) cos (¢ — a).
For elements 3 and 4:

io(,a) = 14(a) sin (¢ — o).
The phase term for element 1 is

7
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. . . Po
-sin @ sin @ sin ¢ + ——
27
«cos 6.
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Then Ej for the helical portion of element
1 is given by

X 2Nx @
Euu, = —jK fa=o cos (——2N>

. cos (¢ — a) exp [jk (ro cos a
- sin # cos ¢ +rpsin « sin @ sin ¢

Pa
+ —cos 6)] da.
2%

Similarly, the field of element 2 is
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Elements 3 and 4 (the second bifilar
helix) are fed in phase quadrature, to
elements 1 and 2, respectively. The fields
are
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Eyy; = K f . cos (W) sin (¢ — a)
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+ 7y cos a sin 8 sin ¢

Pa
+ — cos 0)] de
27

measurement frequency 400 MHz
0.1 inch
16.0 inches

element diameter
element length
feed
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Field of the Radials

If the current on the radials is ap-
proximated by a uniform distribution,
the following simplified solutions result:

1/4-turn helix
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1/2-turn helix
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Computation

Numerical integration of these ex-
pressions with a digital computer pro-
vided the theoretical patterns of Fig. 2.
The measured patterns plotted for com-
parison were taken under the conditions
outlined in the following section. The
experimental patterns are circularly pol-
arized for all ¢ and ¢, indicating that Ey
has the same shape as E,.

EXPERIMENTAL DATA

Radiation Patterns

These details are common in the data
of Fig. 3:

orthogonal folded baluns; power division and phase

quadrature obtained with a directional coupler

mechanical support

0.625-inch diameter aluminum tube provides a balun

shield and a shorting point for the distal ends of the

elements

geometry

1
Loz = NVF (16.0" — 2rg)? — 4xr%

Impedance

Limited data indicates & variation in
the input impedance at resonance from
70 ohms for the 1/4-turn helix to 15 ochms
for the 1-turn helix.
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Equatorial Plane Pattern of an
Axial-TEM Slot on a Finite Size
Ground Plane

The concepts of edge diffraction have
been used to compute the scattered and
radiated fields of waveguide geometries
[1]-[2]. They can also be used to predict
the perturbations in the patterns intro-
duced by such features as the edges of a
ground plane. Lopez [3] has obtained a
rather inaccurate result for the case of a
monopole over a circular ground plane.
Ryan and Peters [4] have introduccd an
equivalent current concept to demon-
strate that good accuracy can be obtained
for this case.

This communication considers a TEM-
mode axially slotted ground plane of
finite width and length, as shown in Fig.
1. The diffractions from the edges of the
ground plane and their contributions to
the overall pattern are shown in the com-
puted results. The radiation-pattern cal-
culation will consist of the superposition
of rays emanating from the aperture
(wedges 1 and 2) and the additional
diffracted rays from wedges 3-6 when
added in proper relative phase. To check
the validity of the technique, experi-
mental results are used for comparison
sinee rigorous solutions do not exist.

The total diffracted field from wedges
1 and 2 including second- and higher
order diffractions [1], [2] is given by

E g—itkrgtal4) 2 1
plresde T T N orkr 2p($0) 63

Rp(¢o) = eitkaiDeingo
(1a)

“(Ri(¢0) + Ra(go)eikasindo)
where
Ri(¢o) = RoiV(¢0) + Bo1W(e0) (2)
RBu(¢0) = BV {(¢0) + BE;™(¢0). (22)
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